Kasai K, Nakamura Y, White R: Amplification of a variable number of tandem repeats (VNTR) locus (pMCT118) by the polymerase chain reaction (PCR) and its application to forensic science. J Forensic Sci. 1990, 35: 1196-1200.
Article
CAS
PubMed
Google Scholar
Budowle B, Chakraborty R, Giusti AM, Eisenberg AJ, Allen RC: Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet. 1991, 48: 137-144.
PubMed Central
CAS
PubMed
Google Scholar
Sajantila A, Budowle B, Ström M, Johnsson V, Lukka M, Peltonen L, Ehnholm C: PCR amplification of alleles at the D1S80 locus: comparison of a Finnish and a North American Caucasian population sample, and forensic casework evaluation. Am J Hum Genet. 1992, 50: 816-825.
PubMed Central
CAS
PubMed
Google Scholar
Kloosterman AD, Budowle B, Daselaar P: PCR-amplification and detection of the human D1S80 VNTR locus. Int J Leg Med. 1993, 105: 257-264. 10.1007/BF01370382.
Article
CAS
Google Scholar
Edwards A, Civitello A, Hammond HA, Caskey CT: DNA-typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet. 1991, 49: 746-756.
PubMed Central
CAS
PubMed
Google Scholar
Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R: Genetic variation at five trimeric and tetrameric trandem repeat loci in four human population groups. Genomics. 1992, 12: 241-253. 10.1016/0888-7543(92)90371-X.
Article
CAS
PubMed
Google Scholar
Kimpton CP, Gill P, Walton A, Urquhart A, Millican ES, Adams M: Automated DNA profiling employing multiplex amplification of short tandem repeat loci. PCR Methods Appl. 1993, 3: 13-22.
Article
CAS
PubMed
Google Scholar
Kimpton C, Fisher D, Watson S, Adams M, Urquhart A, Lygo J, Gill P: Evaluation of an automated DNA profiling system employing multiplex amplification of four tetrameric STR loci. Int J Leg Med. 1994, 106: 302-311. 10.1007/BF01224776.
Article
CAS
Google Scholar
Frégeau CJ, Fourney RM: DNA typing with fluorescently tagged short tandem repeats: A sensitive and accurate approach to human identification. Biotechniques. 1993, 15: 100-119.
PubMed
Google Scholar
van Oorschot RAH, Gutowski SJ, Robinson SL: HUMTH01: amplification, species specificity, population genetics and forensic applications. Int J Leg Med. 1994, 107: 121-126. 10.1007/BF01225598.
Article
CAS
Google Scholar
Gill P, Kimpton C, D'Aloja E, Anderson J, Bar W, Brinkmann B, Holgersson S, Johnsson V, Kloosterman A, Lareu M: Report of the European DNA profiling group (EDNAP) - towards standardisation of short tandem repeat (STR) loci. Forensic Sci Int. 1994, 65: 51-59. 10.1016/0379-0738(94)90299-2.
Article
CAS
PubMed
Google Scholar
Hammond HA, Jin L, Zhong Y, Caskey CT, Chakraborty R: Evaluation of 13 short tandem repeat loci for use in personal identification applications. Am J Hum Genet. 1994, 55: 175-189.
PubMed Central
CAS
PubMed
Google Scholar
Promega Corporation: GenePrint™STR Systems Technical Manual, Part #TMD004. 1996, Wisconsin: Promega
Google Scholar
Wallin JM, Buoncristiani MR, Lazaruk KD, Fildes N, Holt CL, Walsh PS: TWGDAM validation of the AmpFlSTR Blue PCR amplification kit for forensic casework analysis. J Forensic Sci. 1998, 43: 854-870.
Article
CAS
PubMed
Google Scholar
Wallin JM, Holt CL, Lazaruk KD, Nguyen TH, Walsh PS: Constructing universal multiplex PCR systems for comparative genotyping. J Forensic Sci. 2002, 47: 52-65.
Article
CAS
PubMed
Google Scholar
Cotton EA, Allsop RF, Guest JL, Frazier RRE, Koumi P, Callow IP, Seager A, Sparkes RL: Validation of the AmpFlSTR SGM plus system for use in forensic casework. Forensic Sci Int. 2000, 112: 151-161. 10.1016/S0379-0738(00)00182-1.
Article
CAS
PubMed
Google Scholar
Lins AM, Micka KA, Sprecher CJ, Taylor JA, Bacher JW, Rabbach DR, Bever RA, Creacy SD, Schumm JW: Development and population study of an eight-locus short tandem repeat (STR) multiplex system. J Forensic Sci. 1998, 43: 1168-1180.
Article
CAS
PubMed
Google Scholar
Holt CL, Buoncristiani M, Wallin JM, Nguyen T, Lazaruk KD, Walsh PS: TWGDAM validation of AmpFlSTR PCR amplification kits for forensic DNA casework. J Forensic Sci. 2002, 47: 66-96.
Article
CAS
PubMed
Google Scholar
Sprecher CJ, McLaren RS, Rabbach D, Krenke B, Ensenberger MG, Fulmer PM, Downey L, McCombs E, Storts DR: PowerPlex ESX and ESI systems: A suite of new STR systems designed to meet the changing needs of the DNA-typing community. Forensic Sci Int Genet Suppl Series. 2009, 2: 2-4. 10.1016/j.fsigss.2009.08.058.
Article
Google Scholar
Hill C, Duewer D, Kline M, Sprecher C, McLaren R, Rabbach D, Krenke B, Ensenberger M, Fulmer P, Storts D, Butler J: Concordance and population studies along with stutter and peak height ratio analysis for the PowerPlex® ESX 17 and ESI 17 Systems. Forensic Sci Int Genet.
Promega Corporation. [http://www.promega.com/applications/hmnid/]
Applied Biosystems. 2009, Forensic News, NGM Kit, [http://marketing.appliedbiosystems.com/images/Product_Microsites/NGM/downloads/NextGen_SS_v2.pdf]
Gill P: Role of short tandem repeat DNA in forensic casework in the UK - past, present and future perspectives. Biotechniques. 2002, 32: 366-372.
CAS
PubMed
Google Scholar
Butler J: Genetics and genomics of core short tandem repeat loci used in human identity testing. J Forensic Sci. 2006, 51: 253-265. 10.1111/j.1556-4029.2006.00046.x.
Article
CAS
PubMed
Google Scholar
Sanchez JJ, Phillips C, Børsting C, Balogh K, Bogus M, Fondevila M, Harrison CD, Musgrave-Brown E, Salas A, Syndercombe-Court D: A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis. 2006, 27: 1713-1724. 10.1002/elps.200500671.
Article
CAS
PubMed
Google Scholar
Phillips C, Fang R, Ballard D, Fondevila M, Harrison C, Hyland F, Musgrave-Brown E, Proff C, Ramos-Luis E, Sobrino B, SNPforID Consortium: Evaluation of the Genplex SNP typing system and a 49plex forensic marker panel. Forensic Sci Int Genet. 2007, 1: 180-185. 10.1016/j.fsigen.2007.02.007.
Article
CAS
PubMed
Google Scholar
Wiegand P, Kleiber M: Less is more - length reduction of STR amplicons using redesigned primers. Int J Leg Med. 2001, 114: 285-287. 10.1007/s004140000162.
Article
CAS
Google Scholar
Butler JM, Shen Y, McCord BR: The development of reduced size STR amplicons as tools for analysis of degraded DNA. J Forensic Sci. 2003, 48: 1054-1064.
CAS
PubMed
Google Scholar
Schumm JW, Wingrove RS, Douglas EK: Robust STR multiplexes for challenging casework samples. Int Congr Ser. 2004, 1261: 547-549. 10.1016/S0531-5131(03)01776-X.
Article
CAS
Google Scholar
Coble M, Butler J: Characterization of new miniSTR loci to aid analysis of degraded DNA. J Forensic Sci. 2005, 50: 43-53. 10.1520/JFS2004216.
Article
CAS
PubMed
Google Scholar
Grubwieser P, Mühlmann R, Berger B, Niederstätter H, Pavlic M, Parson W: A new 'miniSTR-multiplex' displaying reduced amplicon lengths for the analysis of degraded DNA. Int J Leg Med. 2006, 120: 115-120. 10.1007/s00414-005-0013-6.
Article
CAS
Google Scholar
Wiegand P, Klein R, Braunschweiger G, Hohoff C, Brinkmann B: Short amplicon STR multiplex for stain typing. Int J Leg Med. 2006, 120: 160-164. 10.1007/s00414-005-0048-8.
Article
CAS
Google Scholar
Dixon LA, Dobbins AE, Pulker HK, Butler JM, Vallone PM, Coble MD, Parson W, Berger B, Grubwieser P, Mogensen HS: Analysis of artificially degraded DNA using STRs and SNPs-results of a collaborative European (EDNAP) exercise. Forensic Sci Int. 2006, 164: 33-44. 10.1016/j.forsciint.2005.11.011.
Article
CAS
PubMed
Google Scholar
Parsons TJ, Huel R, Davoren J, Katzmarzyk C, Milos A, Selmanović A, Smajlović L, Coble MD, Rizvić A: Application of novel 'mini-amplicon' STR multiplexes to high volume casework on degraded skeletal remains. Forensic Sci Int Genet. 2007, 1: 175-179. 10.1016/j.fsigen.2007.02.003.
Article
PubMed
Google Scholar
Mulero JJ, Chang CW, Lagacé RE, Wang DY, Bas JL, McMahon TP, Hennessy LK: Development and validation of the AmpFlSTR MiniFiler PCR amplification kit: a miniSTR multiplex for the analysis of degraded and/or PCR inhibited DNA. J Forensic Sci. 2008, 53: 838-852. 10.1111/j.1556-4029.2008.00760.x.
Article
CAS
PubMed
Google Scholar
Welch L, Gill P, Tucker VC, Schneider PM, Parson W, Mogensen HS, Morling N: A comparison of mini-STRs versus standard STRs - Results of a collaborative European (EDNAP) exercise. Forensic Sci Int Genet. 2010,
Google Scholar
Hellman A, Rohleder U, Schmitter H, Wittig M: STR typing of human telogen hairs - a new approach. Int J Legal Med. 2001, 114: 269-273. 10.1007/s004140000175.
Article
Google Scholar
Hochmeister MN, Budowle B, Jung J, Borer UV, Comey CT, Dirnhofer R: PCR-based typing of DNA extracted from cigarette butts. Int J Leg Med. 1991, 104: 229-233. 10.1007/BF01369812.
Article
CAS
Google Scholar
Higuchi R, von Beroldingen CH, Sensabaugh GF, Erlich HA: DNA typing from single hairs. Nature. 1988, 332: 543-546. 10.1038/332543a0.
Article
CAS
PubMed
Google Scholar
Brinkmann B, Rand S, Bajanowski T: Forensic identification of urine samples. Int J Leg Med. 1992, 105: 59-61. 10.1007/BF01371242.
Article
CAS
Google Scholar
Wiegand P, Bajanowski T, Brinkmann B: DNA typing of debris from fingernails. Int J Leg Med. 1993, 106: 81-83. 10.1007/BF01225045.
Article
CAS
Google Scholar
Sweet D, Lorente JA, Valenzuela A, Lorente M, Villaneuva E: PCR-based DNA typing of saliva stains recovered from human skin. J Forensic Sci. 1997, 42: 447-451.
CAS
PubMed
Google Scholar
Clayton TM, Whitaker JP, Maguire CN: Identification of bodies from the scene of a mass disaster using DNA amplification of short tandem repeat (STR loci). Forensic Sci Int. 1995, 76: 7-15. 10.1016/0379-0738(95)01787-9.
Article
CAS
PubMed
Google Scholar
Whitaker JP, Clayton TM, Urquhart AJ, Millican ES, Downes TJ, Kimpton CP, Gill P: Short tandem repeat typing of bodies from a mass disaster: high success rate and characteristic amplification patterns in highly degraded samples. Biotechniques. 1995, 18: 670-677.
CAS
PubMed
Google Scholar
Primorac D, Andelinovic S, Definis-Gojanovic M, Drmic I, Rezic B, Baden MM, Kennedy MA, Schanfield MS, Skakel SB, Lee HC: Identification of war victims from mass graves in Croatia, Bosnia and Herzegovina by the use of standard forensic methods and DNA testing. J Forensic Sci. 1996, 41: 891-894.
Article
CAS
PubMed
Google Scholar
Olaisen B, Stenersen M, Mevåg B: Identification by DNA analysis of the victims of the August 1996 Spitsbergen aircraft disaster. Nat Genet. 1997, 15: 402-405. 10.1038/ng0497-402.
Article
CAS
PubMed
Google Scholar
Holland MM, Cave CA, Holland CA, Bille TW: Development of a quality, high throughput DNA analysis procedure for skeletal samples to assist with the identification of victims from the World Trade Center attacks. Croat Med J. 2003, 44: 264-272.
PubMed
Google Scholar
Irwin JA, Edson SM, Loreille O, Just RS, Barritt SM, Lee DA, Holland TD, Parsons TJ, Leney MD: DNA identification of 'Earthquake McGoon' 50 years post-mortem. J Forensic Sci. 2007, 52: 1115-1118. 10.1111/j.1556-4029.2007.00506.x.
Article
CAS
PubMed
Google Scholar
Sudoyo H, Widodo PT, Suryadi H, Lie YS, Safari D, Widjajanto A, Kadarmo DA, Hidayat S, Marzuki S: DNA analysis in perpetrator identification of terrorism-related disaster: suicide bombing of the Australian Embassy in Jakarta 2004. Forensic Sci Int Genet. 2008, 2: 231-237. 10.1016/j.fsigen.2007.12.007.
Article
PubMed
Google Scholar
Piccinini A, Coco S, Parson W, Cattaneo C, Gaudio D, Barbazza R, Galassi A: World War One Italian and Austrian soldier identification project: DNA results of the first case. Forensic Sci Int Genet. 2010, 4: 329-333. 10.1016/j.fsigen.2009.10.005.
Article
PubMed
Google Scholar
van Oorschot RAH, Jones MK: DNA fingerprints from fingerprints. Nature. 1997, 387: 767-10.1038/42838.
Article
CAS
PubMed
Google Scholar
van Hoofstat DE, Deforce DL, Hubert De Pauw IP, Van den Eeckhout EG: DNA typing of fingerprints using capillary electrophoresis: effect of dactyloscopic powders. Electrophoresis. 1999, 20: 2870-2876. 10.1002/(SICI)1522-2683(19991001)20:14<2870::AID-ELPS2870>3.0.CO;2-V.
Article
CAS
PubMed
Google Scholar
Herber B, Herold K: DNA typing of human dandruff. J Forensic Sci. 1998, 43: 648-656.
Article
CAS
PubMed
Google Scholar
van Renterghem P, Leonard D, de Greef C: Use of latent fingerprints as a source of DNA for genetic identification. Prog Forensic Genet. 2000, 8: 501-503.
Google Scholar
Oz C, Levi J, Novoselski Y, Volkov N, Motro U: Forensic identification of a rapist using unusual evidence. J Forensic Sci. 1999, 44: 860-862.
Article
CAS
PubMed
Google Scholar
Webb LG, Egan SE, Turbett GR: Recovery of DNA for forensic analysis from lip cosmetics. J Forensic Sci. 2001, 46: 1474-1479.
Article
CAS
PubMed
Google Scholar
Wickenheiser RA: Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J Forensic Sci. 2002, 47: 442-450.
CAS
PubMed
Google Scholar
Rutty GN: An investigation into the transference and survivability of human DNA following simulated manual strangulation with consideration of the problem of third party contamination. Int J Leg Med. 2002, 116: 170-173. 10.1007/s00414-001-0279-2.
Article
CAS
Google Scholar
Pizzamiglio M, Mameli A, My D, Garofano L: Forensic identification of a murderer by LCN DNA collected from the inside of the victim's car. Int Congress Ser. 2004, 1261: 437-439. 10.1016/S0531-5131(03)01855-7.
Article
CAS
Google Scholar
Bright JA, Petricevic SF: Recovery of trace DNA and its application to DNA profiling of shoe insoles. Forensic Sci Int. 2004, 145: 7-12.
Article
CAS
PubMed
Google Scholar
Hillier EP, Dixon P, Stewart P, Yamashita B, Lama D: Recovery of DNA from shoes. J Canadian Soc Forensic Sci. 2005, 38: 143-150.
Article
CAS
Google Scholar
Polley D, Mickiewicz P, Vaughn M, Miller T, Warburton R, Komonski D, Kantautas C, Reid B, Frappier R, Newman J: Investigation of DNA recovery from firearms and cartridge cases. J Canadian Soc Forensic Sci. 2006, 39: 217-228.
Article
CAS
Google Scholar
Petricevic SF, Bright JA, Cockerton SL: DNA profiling of trace DNA recovered from bedding. Forensic Sci Int. 2006, 159: 21-26. 10.1016/j.forsciint.2005.06.004.
Article
CAS
PubMed
Google Scholar
Hellerud B, Johannessen H, Haltbakk H, Hoff-Olsen P: Zip lock poly bags in drug cases - a valuable source for obtaining identifiable DNA results?. Forensic Sci Int Genet Suppl Ser. 2008, 1: 433-434. 10.1016/j.fsigss.2007.10.013.
Article
Google Scholar
Castella V, Mangin P: DNA profiling success and relevance of 1739 contact stains from casework. Forensic Sci Int Genet Suppl Ser. 2008, 1: 405-407. 10.1016/j.fsigss.2007.10.071.
Article
Google Scholar
Sewell J, Quinones I, Ames C, Multaney B, Curtis S, Seeboruth H, Moore S, Daniel B: Recovery of DNA and fingerprints from touched documents. Forensic Sci Int Genet. 2008, 2: 281-285. 10.1016/j.fsigen.2008.03.006.
Article
PubMed
Google Scholar
Raymond JJ, Walsh SJ, van Oorschot RAH, Gunn PR, Evans L, Roux C: Assessing trace DNA evidence from a residential burglary: abundance, transfer and persistence. Forensic Sci Int Genet Suppl Ser. 2008, 1: 442-443. 10.1016/j.fsigss.2007.10.040.
Article
Google Scholar
Horsman-Hall KM, Orihuela Y, Karczynski SL, Davis AL, Ban JD, Greenspoon SA: Development of STR profiles from firearms and fired cartridge cases. Forensic Sci Int Genet. 2009, 3: 242-250. 10.1016/j.fsigen.2009.02.007.
Article
CAS
PubMed
Google Scholar
Balogh MK, Burger J, Bender K, Schneider PM, Alt KW: STR genotyping and mtDNA sequencing of latent fingerprint on paper. Forensic Sci Int. 2003, 137: 188-195. 10.1016/j.forsciint.2003.07.001.
Article
CAS
PubMed
Google Scholar
Harbison SA, Hamilton JF, Walsh SJ: The New Zealand DNA databank: its development and significance as a crime solving tool. Sci Justice. 2001, 41: 33-37. 10.1016/S1355-0306(01)71846-1.
Article
CAS
PubMed
Google Scholar
Gunn B: An intelligence-led approach to policing in England and Wales and the impact of developments in forensic science. Australian J Forensic Sci. 2003, 35: 149-160. 10.1080/00450610309410574.
Article
Google Scholar
Forensic Science Service [UK]: National DNA Database Annual Report. 2003, [http://www.forensic.gov.uk/pdf/company/publications/annual-reports/annual-report-NDNAD.pdf] -2004
Google Scholar
Walsh SJ, Buckleton J: DNA Intelligence databases. Forensic DNA Evidence Interpretation. Edited by: Buckleton J, Triggs CM, Walsh SJ. 2005, Florida: CRC Press, 439-469.
Google Scholar
Voegeli P, Haas C, Kratzer A, Bär W: Evaluation of the 4-year test period of the Swiss DNA database. Int Congr Ser. 2006, 1288: 731-733. 10.1016/j.ics.2005.10.058.
Article
Google Scholar
Walsh SJ, Buckleton JS, Ribauz O, Roux C, Raymond T: Comparing the growth and effectiveness of forensic DNA databases. Forensic Sci Int Genet Suppl Ser. 2008, 1: 667-668. 10.1016/j.fsigss.2007.11.011.
Article
Google Scholar
National Police Improvement Agency [UK]: National DNA Database Annual Report. 2007, [http://www.npia.police.uk/en/14395.htm] -2009
Google Scholar
Gill P, Whitaker J, Flaxman C, Brown N, Buckleton J: An investigation of the rigor of interpretation rules for STRs derived from less than 100 pg of DNA. Forensic Sci Int. 2000, 112: 17-40. 10.1016/S0379-0738(00)00158-4.
Article
CAS
PubMed
Google Scholar
Whitaker JP, Cotton EA, Gill P: A comparison of the characteristics of profiles produced with the AmpFlSTR SGM Plus multiplex system for both standard and low copy number (LCN) STR DNA analysis. Forensic Sci Int. 2001, 123: 215-223. 10.1016/S0379-0738(01)00557-6.
Article
CAS
PubMed
Google Scholar
Forster L, Thomson J, Kutranov S: Direct comparison of post-28-cycle PCR purification and modified capillary electrophoresis methods with the 34-cycle 'low-copy-number' (LCN) method for analysis of trace forensic DNA samples. Forensic Sci Int Genet. 2008, 2: 318-328. 10.1016/j.fsigen.2008.04.005.
Article
PubMed
Google Scholar
Petricevic S, Whitaker J, Buckleton J, Vintiner S, Patel J, Simon P, Ferraby H, Hermiz W, Russell A: Validation and development of interpretation guidelines for low copy number (LCN) DNA profiling in New Zealand using the AmpFl STR SGM Plus multiplex. Forensic Sci Int Genet. 2010, 4: 305-310. 10.1016/j.fsigen.2009.11.003.
Article
CAS
PubMed
Google Scholar
Roeder AD, Elsmore P, McDonald A: Maximising DNA profiling success form sub-optimal quantities of DNA: A staged approach. Forensic Sci Int Genet. 2009, 3: 128-137. 10.1016/j.fsigen.2008.12.004.
Article
CAS
PubMed
Google Scholar
Caddy B, Taylor GR, Linacre AMT: A review of the science of low template DNA analysis. 2008, [http://www.homeoffice.gov.uk/publications/police/790604/Review_of_Low_Template_DNA_1.pdf]
Google Scholar
Budowle B, Eisenberg AJ, van Daal A: Concerns about low copy number typing. Forensic Sci Int Genet.
McCartney C: LCN DNA: proof beyond reasonable doubt?. Nat Rev Genet. 2009, 9: 325-10.1038/nrg2362.
Article
CAS
Google Scholar
Budowle B, Eisenberg AJ, van Daal A: Low copy number has yet to achieve general acceptance. Forensic Sci Int Genet Suppl Ser. 2009, 2: 551-552. 10.1016/j.fsigss.2009.08.082.
Article
Google Scholar
Buckleton J, Gill P: Further comment "Low copy number has yet to achieve 'general acceptance'" by Budowle B., et al, 2009. FSI Genetics supplementary series 2, 551-552. Forensic Science Int Genet.
Rennison A: Making the case for low-template DNA analysis. Nature. 2010, 465: 157-10.1038/465157c.
Article
CAS
PubMed
Google Scholar
Gill P: Application of low copy number DNA profiling. Croat Med J. 2001, 42: 229-232.
CAS
PubMed
Google Scholar
Balding DJ, Buckleton J: Interpreting low template DNA profiles. Forensic Sci Int Genet. 2009, 4: 1-10. 10.1016/j.fsigen.2009.03.003.
Article
CAS
PubMed
Google Scholar
Budowle B, Eisenberg AJ, van Daal A: Validity of low copy number typing and applications to forensic science. Croat Med J. 2009, 50: 207-217. 10.3325/cmj.2009.50.207.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gill P, Buckleton J: A universal strategy to interpret DNA profiles that does not require a definition of low-copy-number. Forensic Sci Int Genet. 2010, 4: 221-227. 10.1016/j.fsigen.2009.09.008.
Article
CAS
PubMed
Google Scholar
Stoilovic M: Detection of semen and blood stains using Polilight as a light source. Forensic Sci Int. 1991, 51: 289-296. 10.1016/0379-0738(91)90194-N.
Article
CAS
PubMed
Google Scholar
Springer E, Almog J, Frank A, Ziv Z, Bergman P, Qiang WG: Detection of dry body fluids by inherent short wavelength UV luminescence: preliminary results. Forensic Sci Int. 1994, 66: 89-94. 10.1016/0379-0738(94)90332-8.
Article
CAS
PubMed
Google Scholar
Ben Yosef N, Almog J, Frank A, Springer E, Cantu AA: Short UV luminescence for forensic applications: Design of a real-time observation system for detection of latent fingerprints and body fluids. J Forensic Sci. 1998, 43: 299-304.
CAS
PubMed
Google Scholar
Kobus H, Silenieks E, Scharnberg J: Improving the effectiveness of fluorescence for the detection of seminal stains on fabrics. J Forensic Sci. 2002, 47: 819-823.
PubMed
Google Scholar
Lennard C, Stoilovic M: Application of forensic light sources at the crime scene. The Practice of Crime Scene Investigation. Edited by: Horswell J. 2004, Florida: CRC Press LLC, 97-124.
Google Scholar
Vandenberg N, van Oorschot RAH: The use of Polilight in the detection of seminal fluid, saliva and bloodstains and comparison with conventional chemical-based screening tests. J Forensic Sci. 2006, 51: 361-370. 10.1111/j.1556-4029.2006.00065.x.
Article
CAS
PubMed
Google Scholar
Stein C, Kyeck SH, Henssge C: DNA typing of fingerprint treated biological stains. J Forensic Sci. 1996, 41: 1012-1017.
Article
CAS
PubMed
Google Scholar
Anderson J, Bramble S: The effects of fingermark enhancement light sources on subsequent PCR-STR DNA analysis of fresh bloodstains. J Forensic Sci. 1997, 42: 303-306.
Article
Google Scholar
Roux C, Gill K, Sutton J, Lennar C: A further study to investigate the effect of fingerprint enhancement techniques on the DNA analysis of bloodstains. J Forensic Ident. 1999, 49: 357-376.
Google Scholar
Frégeau C, Germain O, Fourney R: Fingerprint enhancement revisited and the effects of blood enhancement chemicals on subsequent profiler plus fluorescent short tandem repeat DNA analysis of fresh and aged bloody fingerprints. J Forensic Sci. 2000, 45: 354-380.
Article
PubMed
Google Scholar
Zamir A, Springer E, Glattstein B: Fingerprints and DNA: STR typing of DNA extracted from adhesive tape processing for fingerprints. J Forensic Sci. 2000, 45: 687-688.
CAS
PubMed
Google Scholar
Zamir A, Oz C, Geller B: Threat mail and forensic science: DNA profiling from items of evidence after treatment with DFO. J Forensic Sci. 2000, 45: 445-446.
CAS
PubMed
Google Scholar
Raymond J, Roux C, Du Pasquier E, Sutton J, Lennard C: The effect of common fingerprint detection techniques on the DNA typing of fingerprints deposited on different surfaces. J Forensic Ident. 2004, 54: 22-44.
Google Scholar
van Oorschot RAH, Phelan DG, Furlong S, Scarfo GM, Holding NL, Cummins MJ: Are you collecting all the available DNA from touched objects?. Int Congress Ser. 2003, 1239: 803-807. 10.1016/S0531-5131(02)00498-3.
Article
CAS
Google Scholar
van Oorschot RAH, Weston R, Jones MK: Retrieval of DNA from touched objects. Proceedings of the 14th International Symposium on the Forensic Sciences of Australian and New Zealand Forensic Science Society, Oct 12-16. 1998, , Adelaide: ANZFSS
Google Scholar
van Oorschot RA, Szepietowska I, Scott DL, Weston RK, Jones MK: Retrieval of genetic profiles from touched objects. Proceedings of the First International Conference in Forensic Human Identification. 1999, , London
Google Scholar
Sweet D, Lorente M, Lorente JA, Valenzuela A, Villaneuva E: An improved method to recover saliva from human skin: the double swab technique. J Forensic Sci. 1997, 42: 320-322.
CAS
PubMed
Google Scholar
Pang BCM, Cheung BKK: Double swab technique for collecting touched evidence. Legal Med. 2007, 9: 181-184. 10.1016/j.legalmed.2006.12.003.
Article
CAS
PubMed
Google Scholar
Prinz M, Schiffner L, Sebestyen JA, Bajda E, Tamariz J, Shaler RC, Baum H, Caragine T: Maximization of STR DNA typing success for touched objects. Int Congress Ser. 2006, 1288: 651-653. 10.1016/j.ics.2005.10.051.
Article
CAS
Google Scholar
Collopy C: Mini-Popule developed to maximize DNA recovery for robotic forensic analysis. Forensic Magazine. 2008, [http://www.forensicmag.com/article/mini-popule-developed-maximize-dna-recovery-robotic-forensic-analysis]
Google Scholar
Hansson O, Finnebraaten M, Knutsen Heitmann I, Ramse M, Bouzga M: Trace DNA collection - performance of minitape and three different swabs. Forensic Sci Int Genet Suppl Ser. 2009, 2: 189-190. 10.1016/j.fsigss.2009.08.098.
Article
Google Scholar
van Oorschot RAH, Schulz RA, Holding NL, Cummins M, Phelan D, Mitchell RJ: Improving collection methods can improve the ability to obtain typings from trace amounts of DNA from touched objects. The XIX International Congress of Genetics, Melbourne, Proceedings. 2003
Google Scholar
Hall D, Fairly M: A single approach to the recovery of DNA and firearm discharge residue evidence. Sci Justice. 2004, 44: 15-19. 10.1016/S1355-0306(04)71680-9.
Article
CAS
PubMed
Google Scholar
Franco M, Goetz R: A new method to recover trace DNA. Proceedings of on Human Identification, Oct 10-12. 2006, , Nashville, USA
Google Scholar
Barash M, Reshef A, Brauner P: The use of adhesive tape for recovery of DNA from crime scene items. J Forensic Sci. 2010, 55: 1058-1064. 10.1111/j.1556-4029.2010.01416.x.
Article
PubMed
Google Scholar
Jiang X: One method of collecting fallen off epithelial cell. Forensic Sci Int Genet Suppl Ser. 2009, 2: 193-10.1016/j.fsigss.2009.09.027.
Article
Google Scholar
Berschick P: Collecting cell material for DNA-typing from clothing using filtertips and vacuum. 23rd World Congress International Society for Forensic Genetics. 2009, , Buenos Aires, Argentina
Google Scholar
Elliott K, Hill DS, Lambert C, Burroughes TR, Gill P: Use of laser microdissection greatly improves the recovery of DNA from sperm on microscope slides. Forensic Sci Int. 2003, 137: 28-36. 10.1016/S0379-0738(03)00267-6.
Article
CAS
PubMed
Google Scholar
Di Martino D, Giuffrè G, Staiti N, Simone A, Todaro P, Saravo L: Laser microdissection and DNA typing of cells from single hair follicles. Forensic Sci Int. 2004, 146 (Suppl): S155-157. 10.1016/j.forsciint.2004.09.047.
Article
CAS
PubMed
Google Scholar
Anslinger K, Mack B, Bayer B, Rolf B, Eisenmenger W: Digoxigenin labelling and laser capture microdissection of male cells. Int J Legal Med. 2005, 119: 374-377. 10.1007/s00414-005-0523-2.
Article
CAS
PubMed
Google Scholar
Budimlija ZM, Lechpammer M, Popiolek D, Fogt F, Prinz M, Bieber FR: Forensic applications of laser capture microdissection: use in DNA-based parentage testing and platform validation. Croat Med J. 2005, 46: 549-555.
PubMed
Google Scholar
Sanders CT, Sanchez N, Ballantyne J, Peterson DA: Laser microdissection separation of pure spermatozoa from epithelial cells for short tandem repeat analysis. J Forensic Sci. 2006, 51: 748-757. 10.1111/j.1556-4029.2006.00180.x.
Article
CAS
PubMed
Google Scholar
Anoruo B, van Oorschot R, Mitchell J, Howells D: Isolating cells from non-sperm cellular mictures using the PALM microlaser micro dissection system. Forensic Sci Int. 2007, 173: 93-96. 10.1016/j.forsciint.2007.01.031.
Article
CAS
PubMed
Google Scholar
Anslinger K, Bayer B, Mack B, Eisenmenger W: Sex-specific fluorescent labelling of cells for laser microdissection and DNA profiling. Int J Legal Med. 2007, 121: 54-56. 10.1007/s00414-005-0065-7.
Article
CAS
PubMed
Google Scholar
Murray C, McAlister C, Elliott K: Identification and isolation of male cells using fluorescence in situ hybridisation and laser microdissection, for use in the investigation of sexual assault. Forensic Sci Int Genet. 2007, 1: 247-252. 10.1016/j.fsigen.2007.05.003.
Article
PubMed
Google Scholar
Vandewoestyne M, van Hoofstat D, van Nieuwerburgh F, Deforce D: Automatic detection of spermatozoa for laser capture microdissection. Int J Legal Med. 2009, 123: 169-175. 10.1007/s00414-008-0271-1.
Article
PubMed
Google Scholar
Vandewoestyne M, van Hoofstat D, van Nieuwerburgh F, Deforce D: Suspension fluorescence in situ hybridization (S-FISH) combined with automatic detection and laser microdissection for STR profiling of male cells in male/female mixtures. Int J Legal Med. 2009, 123: 441-447. 10.1007/s00414-009-0341-z.
Article
PubMed Central
PubMed
Google Scholar
Rieseberg M, Kasper C, Readon KF, Scheper T: Flow cytometry in biotechnology. Appl. Microbiol Biotechnol. 2001, 56: 350-360. 10.1007/s002530100673.
Article
CAS
PubMed
Google Scholar
Brown M, Wittwer C: Flow Cytometry: Principles and clinical applications in hematology. Clin Chem. 2000, 46: 1221-1229.
CAS
PubMed
Google Scholar
Ibrahim SF, van den Engh G: High-speed cell sorting: fundamentals and recent advances. Curr Opin Biotechnol. 2003, 14: 5-12. 10.1016/S0958-1669(02)00009-5.
Article
CAS
PubMed
Google Scholar
Horsman KM, Bienvenue JM, Blasier KR, Landers JP: Forensic DNA analysis on microfluidic devices: a review. J Forensic Sci. 2007, 52: 784-799. 10.1111/j.1556-4029.2007.00468.x.
Article
CAS
PubMed
Google Scholar
Schoell WMJ, Klintschar M, Mirhashemi R, Pertl B: Separation of sperm and vaginal cells with flow cytometry for DNA typing after sexual assault. Obstet Gynecol. 1999, 94: 623-627. 10.1016/S0029-7844(99)00373-7.
Article
CAS
PubMed
Google Scholar
Di Nunno N, Melato M, Vimercati A, Di Nunno C, Costantinides F, Vecchiotti C, Frezzini C, Cina S, Vimercati F: DNA identification of sperm cells collected and sorted by flow cytometry. Am J Forensic Med Pathol. 2003, 24: 254-270. 10.1097/00000433-200306000-00012.
Article
PubMed
Google Scholar
Raymond JJ, van Oorschot RA, Walsh SJ, Roux C: Trace DNA analysis: do you know what your neighbour is doing? A multi-jurisdictional survey. Forensic Sci Int Genet. 2008, 2: 19-28. 10.1016/j.fsigen.2007.07.001.
Article
PubMed
Google Scholar
Raymond JJ, van Oorschot RAH, Walsh SJ, Gunn PR, Roux C: How far have we come with trace DNA since 2004? The Australian and New Zealand experience. Australian J Forensic Sci.
Walsh PS, Metzger DA, Higuchi R: Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991, 10: 506-513.
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. 1989, New York: CSHL Press
Google Scholar
Vandenberg N, van Oorschot RAH, Mitchell RJ: An evaluation of selected DNA extraction strategies for short tandem repeat typing. Electrophoresis. 1997, 18: 1624-1626. 10.1002/elps.1150180924.
Article
CAS
PubMed
Google Scholar
Greenspoon SA, Scarpetta MA, Drayton ML, Turek SA: QIAamp Spin columns as a method of DNA isolation for forensic casework. J Forensic Sci. 1998, 43: 1024-1030.
Article
CAS
PubMed
Google Scholar
Greenspoon SA, Ban JD, Sykes K, Ballard EJ, Edler SS, Baisden M, Covington BL: Application of the BioMek 2000 Laboratory Automation Workstation and the DNA IQ System to the extraction of forensic casework samples. J Forensic Sci. 2004, 49: 29-39.
PubMed
Google Scholar
Frégeau CJ, Lett CM, Fourney RM: Validation of a DNA IQ™-based extraction method for TECAN robotic liquid handling workstations for processing casework. Forensic Sci Int Genet. 2010, 4: 292-304. 10.1016/j.fsigen.2009.11.001.
Article
PubMed
CAS
Google Scholar
Côté A, Landry M, Rochette S, Gibson K, Lapointe M, Sarafian V: Automated DNA extraction from large volumes. Forensic Sci Int Genet Suppl Ser. 2008, 1: 22-23. 10.1016/j.fsigss.2007.10.216.
Article
Google Scholar
Schiffner L, Bajda E, Prinz M, Sebestyen J, Shaler R, Caragine T: Optimization of a simple, automatable extraction method to recover sufficient DNA from low copy number DNA samples for generation of short tandem repeat profiles. Croat Med J. 2005, 46: 578-586.
PubMed
Google Scholar
Hudlow WR, Krieger R, Meusel M, Sehhat JC, Timken MD, Buocristiani MR: The NucleoSpin DNA Clean-up XS kit for the concentration and purification of genomic DNA extracts: an alternative to microdialysis filtration. Forensic Sci Int Genet.
Park SJ, Kim JY, Yang YG, Lee SH: Direct STR amplification from whole blood and blood- or saliva-spotted FTA without DNA purification. J Forensic Sci. 2008, 53: 335-341. 10.1111/j.1556-4029.2008.00666.x.
Article
CAS
PubMed
Google Scholar
Barbaro A, Cormaci P, Teatino A, Barbaro A: Use of 'AnyDirect PCR buffer' for PCR amplification of washed bloodstains: a case report. Forensic Sci Int Genet Suppl Ser. 2008, 1: 11-12. 10.1016/j.fsigss.2007.10.201.
Article
Google Scholar
Raymond JJ, van Oorschot RAH, Walsh SJ, Roux C, Gunn PR: Trace DNA and street robbery: a criminalistic approach to DNA evidence. Forensic Sci Int Genet Suppl Ser. 2009, 2: 544-546. 10.1016/j.fsigss.2009.08.073.
Article
Google Scholar
Cupples CM, Champagne JR, Lewis KE, Cruz TD: STR profiles from DNA samples with 'undetected' or low Quantifiler results. J Forensic Sci. 2009, 54: 103-107. 10.1111/j.1556-4029.2008.00914.x.
Article
CAS
PubMed
Google Scholar
Gilbert N: Science in court: DNA's identity crisis. Nature. 2010, 464: 347-348. 10.1038/464347a.
Article
CAS
PubMed
Google Scholar
Rameckers J, Hummel S, Herrmann B: How many cycles does a PCR need? Determinations of cycle numbers depending on the number of targets and the reaction efficiency factor. Naturwissenschaften. 1997, 84: 259-262. 10.1007/s001140050393.
Article
CAS
PubMed
Google Scholar
Kloosterman AD, Kersbergen P: Efficacy and limits of genotyping low copy number (LCN) DNA samples by multiplex PCR of STR loci. J Soc Biol. 2003, 197: 351-359.
CAS
PubMed
Google Scholar
Jensen GA, Singh SK, Kumar R, Wengel J, Jacobsen JP: A comparison of the solution structures of an LNA:DNA duplex and the unmodified DNA:DNA duplex. J Chem Soc Perkin Trans. 2001, 2: 1224-1232.
Article
CAS
Google Scholar
Braasch DA, Corey DR: Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol. 2001, 8: 1-7. 10.1016/S1074-5521(00)00058-2.
Article
CAS
PubMed
Google Scholar
Ballantyne KN, van Oorschot RA, Mitchell RJ: Locked nucleic acids in PCR increase sensitivity and performance. Genomics. 2008, 91: 301-305. 10.1016/j.ygeno.2007.10.016.
Article
CAS
PubMed
Google Scholar
Ballantyne KN, van Oorschot RA, Mitchell RJ: Increased amplification success from forensic samples with locked nucleic acids. Forensic Sci Int Genet.
Gaines ML, Wojtkiewicz PW, Valentine JA, Brown CL: Reduced volume PCR amplification reactions using the AmpFlSTR Profiler Plus kit. J Forensic Sci. 2002, 47: 1224-1237.
Article
CAS
PubMed
Google Scholar
Schmidt U, Lutz-Bonengel S, Weisser H, Sänger T, Pollak S, Schön U, Zacher T, Mann W: Low-volume amplification on chemically structured ships using the PowerPlex16 DNA amplification kit. Int J Legal Med. 2006, 120: 42-48. 10.1007/s00414-005-0041-2.
Article
PubMed
Google Scholar
Hedman J, Nordgaard A, Rasmusson B, Ansell R, Rådström P: Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modelling of DNA profiling. Biotechniques. 2009, 47: 951-958. 10.2144/000113246.
Article
CAS
PubMed
Google Scholar
Kreader CA: Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol. 1996, 62: 1102-1106.
PubMed Central
CAS
PubMed
Google Scholar
Jiang Z, Zhang X, Deka R, Jin L: Genome amplification of single sperm using multiple displacement amplification. Nucleic Acids Res. 2005, 33: e91-10.1093/nar/gni089.
Article
PubMed Central
PubMed
CAS
Google Scholar
Hellani A, Coskun S, Benkhalifa M, Tbakhi A, Sakati N, Al-Odaib A, Ozand P: Multiple displacement amplification on single cell and possible PGD applications. Mol Hum Reprod. 2004, 10: 847-852. 10.1093/molehr/gah114.
Article
CAS
PubMed
Google Scholar
Raghunathan A, Ferguson HR, Bornarth CJ, Song W, Driscoll M, Lasken RS: Genomic DNA amplification from a single bacterium. Appl Environ Microbiol. 2005, 71: 3342-3347. 10.1128/AEM.71.6.3342-3347.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ballantyne KN, van Oorschot RAH, Mitchell RJ: Comparison of two whole genome amplification methods for STR genotyping of LCN and degraded DNA samples. Forensic Sci Int. 2007, 166: 35-41. 10.1016/j.forsciint.2006.03.022.
Article
CAS
PubMed
Google Scholar
Balogh MK, Børsting C, Sánchez DP, Thacker C, Syndercombe-Court D, Carracedo A, Morling N, Schneider PM: Application of whole genome amplification for forensic analysis. Int Congr Ser. 2006, 1288: 725-727. 10.1016/j.ics.2005.12.017.
Article
CAS
Google Scholar
Thacker CR, Balogh MK, Børsting C, Ramos E, Sánchez DP, Carracedo A, Morling N, Schneider P, Syndercombe-Court D, SNPforID Consortium: The effect of whole genome amplification on samples originating from more than one donor. Int Congr Ser. 2006, 1288: 722-724. 10.1016/j.ics.2005.09.170.
Article
CAS
Google Scholar
Ballantyne KN, van Oorschot RAH, Mitchell RJ, Koukoulas I: Molecular crowding increases the amplification success of multiple displacement amplification and short tandem repeat genotyping. Anal Biochem. 2008, 355: 298-303. 10.1016/j.ab.2006.04.039.
Article
CAS
Google Scholar
Ballantyne KN, van Oorschot RAH, Muharam I, van Daal A, Mitchell RJ: Decreasing amplification bias associated with multiple displacement amplification and short tandem repeat genotyping. Anal Biochem. 2008, 368: 222-229. 10.1016/j.ab.2007.05.017.
Article
CAS
Google Scholar
Pan X, Urban AE, Palejev D, Schulz D, Grubert F, Hu Y, Snyder M, Weissman SM: A procedure for highly specific, sensitive, and unbiased whole-genome amplification. Proc Natl Acad Sci. 2008, 105: 15499-15504. 10.1073/pnas.0808028105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith PJ, Ballantyne J: Simplified low-copy-number DNA analysis by post-PCR purification. J Forensic Sci. 2007, 52: 820-829. 10.1111/j.1556-4029.2007.00470.x.
Article
CAS
PubMed
Google Scholar
Butler JM, Buel E, Crivellente F, McCord BR: Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analysers for STR analysis. Electrophoresis. 2004, 25: 1397-1412. 10.1002/elps.200305822.
Article
CAS
PubMed
Google Scholar
Weston AA, Nagel JHA, Benschop CCG, Weiler NEC, de Jong BJ, Sijen T: Higher capillary electrophoresis injection settings as an efficient approach to increase the sensitivity of STR typing. J Forensic Sci. 2009, 54: 591-598. 10.1111/j.1556-4029.2009.01022.x.
Article
CAS
Google Scholar
Caragine T, Mikulasovich R, Tamariz J, Bajda E, Sebestyen J, Baum H, Prinz M: Validation of testing and interpretation protocols for low template DNA samples using AmpFlSTR Identifiler. Croat Med J. 2009, 50: 250-267. 10.3325/cmj.2009.50.250.
Article
PubMed Central
CAS
PubMed
Google Scholar
Invitrogen Life Science: Fluorophores and their amine-reactive dervatives. Molecular Probes: The Handbook. Chapter 1: [http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook.html]
Berti L, Zie J, Medintz IL, Glazer AN, Mathies RA: Energy transfer cassettes for facile labeling of sequencing and PCR primers. Anal Biochem. 2001, 292: 188-197. 10.1006/abio.2001.5069.
Article
CAS
PubMed
Google Scholar
Yeung SH, Seo TS, Crouse CA, Greenspoon SA, Chiesl TN, Ban JD, Mathies RA: Fluorescence energy transfer-labeled primers for high-performance forensic DNA profiling. Electrophoresis. 2008, 29: 2251-2259. 10.1002/elps.200700772.
Article
CAS
PubMed
Google Scholar
Gill P, Curran J, Elliot K: A graphical simulation model of the entire DNA process associated with the analysis of short tandem repeat loci. Nucl Acid Res. 2005, 33: 632-643. 10.1093/nar/gki205.
Article
CAS
Google Scholar
Lucy D, Curran JM, Pirie AA, Gill P: The probability of achieving full allelic representation for LCN-STR profiling of haploid cells. Sci Justice. 2007, 47: 168-171. 10.1016/j.scijus.2007.10.001.
Article
CAS
PubMed
Google Scholar
Benschop CCG, van der Beek CP, Meiland HC, van Gorp AGM, Westen AA, Sijen T: Low template STR typing: Effect of replication number and consensus method on genotyping reliability and DNA database search results. Forensic Sci Int Genet.
R v Sean Hoey: Crown Court of Northern Ireland. 2007, 341/05
Google Scholar
Rennison A: The forensic science regulator: response to Professor Brian Caddy's review of the science of low template DNA analysis. [http://www.homeoffice.gov.uk/publications/police/operational-policing/response-caddy-dna-review?view=Binary]
Gill P, Puch-Solis R, Curran J: The low-template-DNA (stochastic) threshold - its determination relative to risk analysis for national DNA databases. Forensic Sci Int Genet. 2009, 3: 104-111. 10.1016/j.fsigen.2008.11.009.
Article
CAS
PubMed
Google Scholar
Budowle B, Onorato AJ, Callaghan TF, Della Manna A, Gross AM, Guerrieri RA, Luttman JC, McClure DL: Mixture interpretation: defining the relevant features for guidelines for the assessment of mixed DNA profiles in forensic casework. J Forensic Sci. 2009, 54: 810-821. 10.1111/j.1556-4029.2009.01046.x.
Article
CAS
PubMed
Google Scholar
Gilder JR, Doom TE, Inman K, Krane DE: Run-specific limits of detection and quantitation for STR-based DNA testing. J Forensic Sci. 2007, 52: 97-101. 10.1111/j.1556-4029.2006.00318.x.
Article
CAS
PubMed
Google Scholar
Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J: Reliable genotyping of samples with very low DNA quantities using PCR. Nucl Acids Res. 1996, 24: 3189-3194. 10.1093/nar/24.16.3189.
Article
PubMed Central
CAS
PubMed
Google Scholar
Buckleton J, Triggs C: Is the 2p rule always conservative?. Forensic Sci Int. 2006, 159: 206-209. 10.1016/j.forsciint.2005.08.004.
Article
CAS
PubMed
Google Scholar
Buckleton J, Curran J: A discussion of the merits of random man not excluded and likelihood ratios. Forensic Sci Int Genet. 2008, 2: 343-348. 10.1016/j.fsigen.2008.05.005.
Article
PubMed
Google Scholar
Curran JM, Buckleton J: Inclusion probabilities and dropout. J Forensic Sci. 2010, 55: 1171-1173. 10.1111/j.1556-4029.2010.01446.x.
Article
PubMed
Google Scholar
Gill P, Brenner CH, Buckleton JS, Carracedo A, Krawczak M, Mayr WR, Morling N, Prinz M, Schneider PM, Weir BS, DNA commission of the International Society of Forensic Genetics: DNA commission of the International Society of Forensic Genetics: Recommendations on the interpretations of mixtures. Forensic Sci Int. 2006, 160: 90-101. 10.1016/j.forsciint.2006.04.009.
Article
CAS
PubMed
Google Scholar
Cowell RG, Lauritzen SL, Mortera J: Probabilistic expert systems for handling artifacts in complex DNA mixtures. Forensic Sci Int Genet.
Curran JM, Gill P, Bill MR: Interpretation of repeat measurement DNA evidence allowing for multiple contributors and population substructure. Forensic Sci Int. 2005, 148: 47-55. 10.1016/j.forsciint.2004.04.077.
Article
CAS
PubMed
Google Scholar
Gill P, Kirkham A, Curran J: LoComatioN: a software tool for the analysis of low copy number DNA profiles. Forensic Sci Int. 2007, 166: 128-138. 10.1016/j.forsciint.2006.04.016.
Article
CAS
PubMed
Google Scholar
Tvedebrink T, Eriksen PS, Mogensen HS, Morling N: Estimating the probability of allelic drop-out of STR alleles in forensic genetics. Forensic Sci Int Genet. 2009, 3: 222-226. 10.1016/j.fsigen.2009.02.002.
Article
CAS
PubMed
Google Scholar
Walsh PS, Fildes NJ, Reynolds R: Sequence analysis and characterisation of stutter products at the tetranucleotide repeat locus vWA. Nucl Acids Res. 1996, 24: 2807-2812. 10.1093/nar/24.14.2807.
Article
PubMed Central
CAS
PubMed
Google Scholar
LeClair B, Frégeau CJ, Bowen KL, Fourney RM: Systematic analysis of stutter percentages and allele peak height and peak area ratios at heterozygous STR loci for forensic casework and database samples. J Forensic Sci. 2004, 49: 968-80.
CAS
PubMed
Google Scholar
Gibb AJ, Huell A, Simmons MC, Brown RM: Characterisation of forward stutter in the AmpFlSTR SGM Plus PCR. Sci Justice. 2009, 49: 24-31. 10.1016/j.scijus.2008.05.002.
Article
CAS
PubMed
Google Scholar
Bright JA, Turkington J, Buckleton J: Examination of the variability in mixed DNA profile parameters for the Identifiler multiplex. Forensic Sci Int Genet. 2010, 4: 111-114. 10.1016/j.fsigen.2009.07.002.
Article
CAS
PubMed
Google Scholar
Perlin MW: Scientific validation of mixture interpretation methods. Proceedings of Promega's 17th International Symposium on Human Identification. [http://www.promega.com/geneticidproc/ussymp17proc/oralpresentations/Perlin.pdf]
Perlin MW, Sinelnikov A: An information gap in DNA evidence interpretation. PLoS One. 2009, 4: e8327-10.1371/journal.pone.0008327.
Article
PubMed Central
PubMed
CAS
Google Scholar
Perlin MW, Kadane JB, Cotton RW: Match Likelihood Ratio for Uncertain Genotypes. Law, Probability and Risk. 2009, 8: 289-302. 10.1093/lpr/mgp024.
Article
Google Scholar
Toothman MH, Kester KM, Champagne J, Cruz TD, Street WS, Brown BL: Characterisation of human DNA in environmental samples. Forensic Sci Int. 2008, 178: 7-15. 10.1016/j.forsciint.2008.01.016.
Article
CAS
PubMed
Google Scholar
Cook O, Dixon L: The prevalence of mixed DNA profiles in fingernail samples taken from individuals in the general population. Forensic Sci Int Genet. 2007, 1: 62-68. 10.1016/j.fsigen.2006.10.009.
Article
CAS
PubMed
Google Scholar
Dowlman EA, Martin NC, Foy MJ, Lochner T, Neocleous T: The prevalence of mixed DNA profiles on fingernail swabs. Sci Justice. 2010, 50: 64-71. 10.1016/j.scijus.2009.03.005.
Article
CAS
PubMed
Google Scholar
Rutty GN, Hopwood A, Tucker V: The effectiveness of protective clothing in the reduction of potential DNA contamination of the scene crime. Int J Leg Med. 2003, 117: 170-174.
CAS
Google Scholar
van Oorschot RAH, Treadwell S, Beaurepaire J, Holding NL, Mitchell RJ: Beware of the possibility of fingerprinting techniques transferring DNA. J Forensic Sci. 2005, 50: 1417-1422. 10.1520/JFS2004430.
Article
CAS
PubMed
Google Scholar
Proff C, Schmitt C, Schneider PM, Foerster G, Rothschild MA: Experiments on the DNA contamination risk via latent fingerprint brushes. Int Congr Ser. 2006, 1288: 601-603. 10.1016/j.ics.2005.10.053.
Article
Google Scholar
Hunter P: Anything you touch may be used against you. Embo Rep. 2010, 11: 424-427. 10.1038/embor.2010.68.
Article
PubMed Central
CAS
PubMed
Google Scholar
Time Magazine Online. Germany's Phantom Serial Killer: A DNA Blunder. 2009, [http://www.time.com/time/world/article/0,8599,1888126,00.html]
Sullivan K, Johnson P, Rowlands D, Allen H: New developments and challenges in the use of the UK DNA database: addressing the issue of contaminated consumables. Forensic Sci Int. 2004, 146 (Suppl): S175-S176.
PubMed
Google Scholar
Poy AL, van Oorschot RAH: Trace DNA presence, origin and transfer within a forensic biology laboratory and its potential effect on casework. J Forensic Ident. 2006, 56: 558-576.
Google Scholar
Gill P, Rowlands D, Tully GG, Bastisch I, Staples T, Scott P: Manufacturer contamination of disposable plastic-ware and other reagents - an agreed position statement by ENFSI, SWGDAM and BSAG. Forensic Sci Int Genet. 2010, 4: 269-270. 10.1016/j.fsigen.2009.08.009.
Article
PubMed
Google Scholar
Ladd C, Adamowicz MS, Bourke MT, Scherczinger CA, Lee HC: A systematic analysis of secondary DNA transfer. J Forensic Sci. 1999, 44: 1270-1272.
Article
CAS
PubMed
Google Scholar
Lowe A, Murray C, Whitaker J, Tully G, Gill P: The propensity of individuals to deposit DNA and secondary transfer of low level DNA from individuals to inert surfaces. Forensic Sci Int. 2002, 129: 25-34. 10.1016/S0379-0738(02)00207-4.
Article
CAS
PubMed
Google Scholar
Farmen RK, Jaghø R, Cortez P, Frøyland ES: Assessment of individual shedder status and implication for secondary DNA transfer. Forensic Sci Int Genet Suppl Ser. 2008, 1: 415-417. 10.1016/j.fsigss.2007.08.015.
Article
Google Scholar
Wiegand P, Heimbold C, Klein R, Immel U, Stiller D, Klintschar M: Transfer of biological stains from different surfaces. Int J Legal Med.
van Oorschot RAH, Goray M, Eken E, Mitchell RJ: Impact of relevant variables on the transfer of biological substances. Forensic Sci Int Genet Suppl Ser. 2009, 2: 547-548. 10.1016/j.fsigss.2009.08.105.
Article
Google Scholar
Goray M, Mitchell RJ, van Oorschot RAH: Investigation of secondary DNA transfer of skin cells under controlled test conditions. Legal Med. 2010, 12: 117-120. 10.1016/j.legalmed.2010.01.003.
Article
CAS
PubMed
Google Scholar
Goray M, Eken E, Mitchell RJ, van Oorschot RA: Secondary DNA transfer of biological substances under varying test conditions. Forensic Sci Int Genet. 2010, 4: 62-67. 10.1016/j.fsigen.2009.05.001.
Article
CAS
PubMed
Google Scholar
National Research Council of the National Academies: Strengthening forensic science in the United States: a path forward. 2009, Washington DC: The National Academies Press
Google Scholar