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Abstract

these algorithms.

ADMIXTURE, fastSTRUCTURE, MDS, PCA, sSNMF

Detecting and quantifying the population substructure present in a sample of individuals are of main interest in the
fields of genetic epidemiology, population genetics, and forensics among others. To date, several algorithms have
been proposed for estimating the amount of genetic ancestry within an individual. In the present review, we
introduce the most widely used methods in population genetics for detecting individual genetic ancestry. We
further show, by means of simulations, the performance of popular algorithms for detecting individual ancestry in
various controlled demographic scenarios. Finally, we provide some hints on how to interpret the results from

Keywords: Population substructure, Human genetic variability, SNPs, Global ancestry, Individual ancestry,

Review

Introduction

The genetic variability among the human species is
known to be relatively low compared to other primate
species [1]. There are paradoxically more genetic differ-
ences between Western and Eastern chimpanzee individ-
uals sampled in the African continent [2] than in any
genome of two human individuals sampled in different
continents [3]. Human genetic diversity also tends to be
positively correlated with the geographic distance be-
tween the sampled individuals [4-6], which is mainly a
result from isolation by distance [7]. Studies using clas-
sical partition of the human genetic variance based on
analysis of molecular variance (AMOVA [8]), and its
generalization GAMOVA [9], have consistently shown
that a small proportion (approximately 10% to 15%) of
the total genetic variability is explained by continent of
origin, whereas the majority (approximately 80%) is ex-
plained by within-individual variation. The remaining
approximately 5% of the genetic variation is explained
by the populations [10]. Interpreting these results in
terms of human population substructure and individual
prediction to a population cluster is still controversial
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[11]. Some argue that humans should be considered as
one genetically homogeneous group [12]; others suggest
that, although small, the geographic dependence of hu-
man genetic diversity (at least) supports the existence of
continental groups [11,13].

Inferring population substructure in the human gen-
ome is cumbersome and is the main goal for the large
number of genetic ancestry algorithms and approaches
that have been proposed in the last decade. A basic as-
sumption is that any current individual genome or
population is a mixture of ancestries from past popula-
tions [14]. Therefore, genetic ancestry is defined at dif-
ferent scales of complexity: at populations, at individuals
within a population, and at a locus within an individual.
In the present review, we focus on current methods for
inferring genetic ancestry in the genome of an individ-
ual. We analyze the performance of some of the most
commonly used programs through simulated data and
show the range of parameters in which each program
provides reliable results in those settings.

Methods for identifying individual ancestry

Methods for estimating ancestry have traditionally fo-
cused on populations; their main interests are to estab-
lish the relationship among populations and to quantify
the admixture proportions in the admixed populations
[15,16]. Admixture proportions are computed from the

© 2015 Wollstein and Lao; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


mailto:wollstein@gmail.com
mailto:olao@pcb.ub.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Wollstein and Lao Investigative Genetics (2015) 6:7

amount of loci that can be traced back to a certain an-
cestral population. Population methods are the oldest in
literature [17] and are a large number of available appli-
cations [18-21]. However, it has been suggested that
there could be hidden population substructure among
the individuals from an assumed population [22]. The
main goal of global individual ancestry methods is to de-
scribe the relationship between individuals in terms of
genetic ancestry. This can either mean the identification
of the a priori unknown ancestry components, the quan-
tification of the proportions of these components, or the
identification of the assumed population of an individ-
ual. Individual ancestry methods can be classified de-
pending on the assumptions of the method, the scope of
the algorithms (that is, the whole genome is assigned to
one ancestry versus the whole genome is a mixture of
ancestries), and the use of prior ancestry information,
among others (see Table 1). From a technical point of
view, there is large variation in the speed and computa-
tional requirements of the different methods [16,23].
Speed depends on the computational complexity of each
method which, for example, is O(n m K?) for ADMIX-
TURE [24] and O(nz m K) for sSNMF [25], as well as the
possibility to apply divide-and-conquer computational
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approaches such as multithreading (for example, in AD-
MIXTURE and sNMF). However, multithreading can
only provide a linear time factor gain, which in the case
of higher polynomial complexities does not have a
strong computational impact.

Depending on which methodological approach is used,
global individual ancestry methods have been divided by
Alexander et al. [24] into algorithmic and model-based
methods [24]. We use this classification through the
manuscript with some modifications. By definition, all
the algorithms are ‘algorithmic’. Therefore, we will use
the term ‘model-free’ for referring to the ancestry
methods classified by Alexander et al. [24] as algorith-
mic, and point out that the use of ‘model” refers here to
a population-based statistical model, as further de-
scribed. Nevertheless, we acknowledge that some of the
newest proposed methods can also be considered as hy-
brids of the two classifications or even can be barely
assigned to any of them. Model-free methods are based
on the use of multivariate techniques [26] such as Prin-
cipal component analysis (PCA; [27]) or Multidimen-
sional scaling (MDS [28,29]). For a given measured
divergence between any pair of sampled individuals, the
basic idea behind all these techniques is to represent the

Table 1 Commonly applied algorithms to SNP data for quantifying individual population substructure in humans

Type Method Name of Web address Reference
package

Model-free Principal component analysis EIGENSOFT® http://genetics.med.harvard.edu/reich/Reich_Lab/Software html [70]

Principal components and Moran's/  adegenet http://adegenet.r-forge.r-project.org/ [71]
(R software)

Multidimensional scaling PLINK? http://pngu.mgh.harvard.edu/~purcell/plink/ [28]
Principal coordinates PCO-MC http://lamar.colostate.edu/~reevesp/PCOMC/PCOMC.html [72]
Spectral graph theory GemTools http://wpicr.wpic. pitt.edu/WPICCompGen/GemTools/GemTools.htm  [43]
Spectral graph theory SpectralGem http://wpicr.wpic.pittedu/WPICCompGen/Spectral-GEM/GEM+htm  [56]
Laplacian eigenfunction LAPSTRUCT http://galton.uchicago.edu/~junzhang/LAPSTRUCT.html [57]
Genetic algorithm coupled to AMOVA  GAGA http://www.erasmusmc.nl/fmb/resources/GAGA/ [73]

Model-based  Log-likelihood HWE ADMIXTURE https://www.genetics.ucla.edu/software/admixture/ [24]
Log-likelihood HWE FRAPPE http://med.stanford.edu/tanglab/software/frappe.html [31]
Bayesian HWE STRUCTURE http://pritchardlab.stanford.edu/structure.html [22]
Bayesian HWE fastSTRUCTURE  http://pritchardlab.stanford.edu/structure.html [59]
Nonnegative matrix factorization sNMF http://membres-timc.imag.fr/Eric.Frichot/snmf/index.htm [25]
Bayesian BAPS http://www.helsinki fi/bsg/software/ [74]
Chromopainting and Bayesian fineSTRUCTURE  http://www.paintmychromosomes.com [60]
classifier
Log-likelihood genotypic/haplotypic  LOCO-LD http://loco.icsiberkeley.edu/loco/ [37]
gradients
Log-likelihood allelic gradients SPA http://genetics.cs.ucla.edu/spa/ [36]
ADMIXTURE and linear regression GPS http://chcb.saban-chla.usc.edu/gps/ [39]
Bayesian clustering with spatial TESS http://membres-timc.imag.fr/Olivier.Francois/tess.html [38]

information

®We provide one of the possible implementations present in the literature.
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genetic relationships by a new set of orthogonal variables
that are ordered by the decreasing amount of explained
variation. Both methods can be considered as equivalent
if Euclidean distances are used [29]. Visualization of
these relationships becomes very meaningful if only the
variables with the highest amount of explained variation
are considered. Because multivariate methods are ex-
ploratory, they do not make any assumption about the
underlying genetic model of the data [26]. Nevertheless,
in some idealized cases, the proposed coordinates in
some of these methods can be interpreted in demo-
graphic terms (for example, PCA [30]). In contrast,
model-based methods estimate ancestry coefficients as
the parameters of a statistical model. This model takes
into account basic demographic assumptions, such as
the presence of the Hardy-Weinberg equilibrium (HWE;
[22]) in the allelic frequencies of the K ‘ancestral’ popu-
lations that produced the currently observed data
[22,24]. For example, in the original definition of individ-
ual ancestry provided by STRUCTURE [22], the geno-
type g counted as the number of alleles {0,1,2} in a
diploid organism at locus j of individual i is modeled as
a mixture of the g fractions of the K ancestral popula-
tions at the allelic frequencies f The log-likelihood
under the assumption of HWE for all the individuals i
and loci j is then computed using the Alexander et al.
[24] notation as:

L(QF) = 2; 2/: (g,, In (;%kfk;‘) + (%g,,) In <§k:qik (1’f kf)) >

Popular methods for estimating the allelic frequencies
fin the ancestral populations for all the loci and the an-
cestry g proportions in each individual include Bayesian
(for example STRUCTURE [22]) and maximum likeli-
hood approaches (for example, FRAPPE [31] and AD-
MIXTURE [24]).

Recently, new types of global ancestry methods have
been proposed. These methods take advantage of the
spatial dependence of human population substructure
[32] to estimate ancestral geographic coordinates of an
individual (BAPS2 [33], GENELAND [34], sPCA [35],
SPA [36], LOCO-LD [37], TESS [38], or GPS [39] among
others).

There are several ways to estimate the unknown num-
ber (K) of ancestral populations from the data (for ex-
ample, [40]). In model-based methods, the algorithm is
explicitly run by the user at different Ks. The most sup-
ported number of clusters or ancestral components is
then ascertained by taking the one that optimizes the
parameter of performance of the algorithm (for example,
it maximizes the log-likelihood of the posterior in the
case of STRUCTURE; minimization of cross-validation
error is applied in ADMIXTURE among others). In the
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case of model-free methods, using their output, a classi-
fier algorithm can be applied in order to identify the
number of genetically homogeneous population clusters
(see for example [41,42], or [43]). One exception is
sNMEF [25], a new algorithm for inferring ancestry pro-
portions. SNMF models the probability of the observed
genotypes p;; in individual i at locus / as a fraction g of
K ancestral genotype probability gi;, similar in spirit as
STRUCTURE or ADMIXTURE:

palj) = Z%‘kgkl )
k=1

where j=0,1,2 denotes the number of alleles. However,
this algorithm does not make any assumption about HWE
in the ancestral populations. The corresponding matrix
representation is P = QG, where the unknown Q and G
can be estimated by nonlinear matrix factorization. This is
achieved by means of minimizing two least square criteria:

Ls; = |X-QGland Ls, = |(GT; Va 11<)QT—(XT§0n)|7

where alpha is a regularization parameter, and 1; and 0,
describe a column vector with ones and zeros of size K
and # (see [25] for further details; the semicolon indicates
a line break). Starting from random matrices as initial
condition, the algorithm applies both criteria consecu-
tively to obtain estimates about Q from Ls; and G from
Ls,, respectively, until convergence has been reached.

Since model-based methods explore the space of pos-
sible solutions starting from an initial point, it is recom-
mended to run the algorithm several times at different
initial starting points for each proposed K and to check
for reproducibility of results [44]. Different strategies
have been proposed for combining the results from dif-
ferent runs. One possibility is to compute a consensus
ancestry value by merging all the solutions [44]. Another
is just to take the run that provides the best value of
model performance [24].

Usually, investigators apply both model-free (for ex-
ample, PCA or MDS) and model-based methods (for ex-
ample, ADMIXTURE, FRAPPE, or STRUCTURE) to the
same dataset [45,46]. Plots (and further interpretation)
tend to include the solutions of the optimal/best sup-
ported number of clusters.

Further improvements on genotyping technology, with
the description of millions of single nucleotide polymor-
phisms (SNPs) in the human genome [15], have allowed
the third generation of ancestry methods by modeling
the genetic ancestry of local fragments of the genome,
such as HapMix or StepPCO scripts [14,47] among
others.



Wollstein and Lao Investigative Genetics (2015) 6:7

Ups and downs of individual genetic ancestry estimation
Individual ancestry methods can depict a detailed pic-
ture of the genetic landscape of human populations [15].
Furthermore, these algorithms are routinely applied to
any dataset before conducting a genome-wide associ-
ation study (GWAS), in order to correct for the putative
presence of hidden population substructure [48]. More-
over, they have been used to test the hypothesis of the
ancestry origin of the perpetrator at a crime scene in fo-
rensic cases [49].

In principle, averaging the fragments of local ancestry
over the genome of one individual computes the global
ancestry estimation in that individual; similarly, aver-
aging all of the global individual ancestries in one popu-
lation provides a migration/admixture estimation in that
population. Moreover, the mean and variance in the
length of the ancestry fragments and the global ancestry
proportions can be used to estimate parameters such as
the time or migration rate of the admixture event in
particular demographic scenarios [50]. Nevertheless,
population-based methods are sometimes preferred
over global or local ancestry methods [18,51]. The main
reason is that the results of global and local ancestry
methods can be particularly difficult to interpret
[21,52]. For example, several demographic scenarios
can produce the same observed admixture pattern in
PCA [30,53,54]. In humans, multiple demographic
events can be identified in the same geographic area
[55]; therefore, it is likely to find an ad hoc plausible ex-
planation for any estimated admixture pattern (for ex-
ample, see [53]). The presence of unequal sample size
of the (a priori unknown) populations can also bias the
output of some algorithms, such as PCA [30,56]; the
presence of highly genetically related individuals and gen-
etic outliers can also bias the output from different
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algorithms (such as in the case of PCA, [57]). Further-
more, the outcome from the different algorithms can dif-
fer substantially even for the same dataset [58]. Ultimately,
there is the question of what a proposed ‘ancestral popula-
tion’ is. By definition, since new populations appear by
splitting from previous ones, population ancestry (and
hence genetic admixture) can be defined at different time
scales, taking into account that all individuals from a spe-
cies ultimately share a common ancestral origin. However,
this population ‘birth and death’ process is not really mod-
eled in the model-based methods (and by default, neither
is it in the model-free methods); in contrast, it is one of
the main goals of population-based methods, conditioned
to the proper definition of ‘what a current population is’.
We exemplify some of these caveats using unsupervised
analyses from four ascertained global-based algorithms on
simulated and real data using the default parameter set-
tings from each algorithm. In particular, we consider AD-
MIXTURE [24], sSNMF [25], fastSTRUCTURE [59], PCA
[27], and MDS in PLINK [28]. This selection is based on
methodological, historical, and computational characteris-
tics. For example, we did not consider fineSTRUCTURE
[60], a recently developed algorithm with enhanced power
for detecting population substructure [61], because of its
computational burden when the number of SNPs and
sampled individuals are large (see the manual of fineS-
TRUCTURE and chromoPainter for details). The first two
methods represent model-based algorithms. ADMIX-
TURE [24] is a maximum likelihood algorithm. It can be
considered the gold standard of model-based methods; it
is relatively fast and allows for the use of a large number
of SNPs and samples. fastSTRUCTURE is a new software
that implements a Bayesian framework similar to STRUC-
TURE [22]. However, in contrast to STRUCTURE, fas-
tSTRUCTURE allows the fast analysis of a large number
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Figure 1 Basic admixture models commonly used in population genetics. Each rectangle represents a population. Both models consider
one initial ancestral population (gray color) that splits into two new populations t_split generations ago. Each of the new populations evolves without
exchanging migrants for a period of time, during which genetic differentiation between them can take place as exemplified by the presence of a
different color. (A) Continuous gene flow (CGF) model. The blue population contributes 4 Nm chromosome migrants to the red population from time
point t_split onwards, replacing the same number of chromosomes from this population. (B) Hybrid (HI) model. At t_admixture, there is a single event
of admixture, and a new hybrid population is created from m fraction of chromosome migrants from the blue population and 1-m fraction of
migrants from the red population. After this event, each population continues to evolve independently. Adapted from [20].
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of samples and SNPs. PCA, MDS, and sNFM are model-  Table 3 Results from the two-population model
free methods. PCA and MDS are based on eigenvalue de-  simulations
composition. They produce almost identical results in real ~ Variable sNMF Admixture fastStructure

data [62,63]; therefore, we have used either one or the (R2) (R2) (R2)
other indistinctly in the different simulations. SNMF [25]  Sampling depth, n1, n2
is a novel software which in principle produces very simi- 8 99.92 100 3956
lar results to ADMIXTURE [24] but at a computationally 9 09.83 100 3403
faster speed. ‘ 20 9987 100 100
We focused our analyses on two simple, controlled,
. . . 40 99.81 100 100
demographic models. The first demographic model de-
scribes an ancestral population that splits ¢ generations 100 99.74 100 100
ago in two populations. In one version of the model, the ~ Uneven sampling, n1
two descendent populations start evolving independ- 8 98.94 99.45 98.59
ently. In another version, migration between the two g 9943 9978 9932
populations is allc?wed. The se.C011.d model comprises an 9961 100 9291
ancestral population that splits in two, which after a
. . . . . 40 99.67 100 100
certain number of generations evolving with a genetic
barrier, create a new population by admixture (see 100 99.74 100 100
Figure 1). Because of their simplicity, the proposed  Sequencing depth, nsnps
demographic models fit better into the assumptions of 10 313 065 1851
model-based methods. Furthermore, it has been shown 5 66.56 7554 7449
that t.he first dimension of tbe PCA can @fferephajte the ., 8533 9205 9189
genetic ancestry of populations, and it is indicative of
. . . . 500 96.78 99.87 99.93
the ancestry proportions in the admixed populations
[30]. In our analyses, we used markers in linkage equilib- 0% 9862 99.99 100
rium; this condition was either imposed on the simulator ~ 5000 99.74 100 100
(case of ms simulations) or achieved by the use of com-  Population size, theta
monly applied LD pruning techniques. Therefore, any 9973 100 100
d'lfference observeFI in the e‘stlm?ted ances‘try propor- 9974 100 100
tions must reflect inner algorithmic assumptions or sen-
cpe . i . . 5 99.74 100 100
sitivity to the modification of the considered parameters.
10 99.72 100 100
Effective population size,
Performance of global-based algorithms to estimate N2
genetic ancestry on two simulated populations 100 99.98 100 100
Two populations with a genetic barrier 2,500 99.94 100 100
The results from the two-population model (Figure 1A) 7500 99,82 100 100
leth a genetic barrler and the details of the implementa- 10,000 9974 100 100
tion are shown in Tables 2 and 3. ) ,
Divergence time (Fsy),
T/(4 Ny)
Table 2 Default parameter used in two-population 0.000075 0.54 038 0.01
models, with and without migration 000025 0.4 003 0
Parameter Abbreviation Default value (5195 619 003 024
Sample size population 1 ni 100 00025 6936 9528 053
Sample size population 2 n2 100 00125 9836 100 100
Number of independent SNPs nsnps 5,000 005 99.74 100 100
n a
Mutation rate (length) theta 2 Constant migration rate,
Effective population size® N1, N2 10,000 4Nm
Divergence time T 2,000 0.1 99.77 100 100
Constant migration rate 4 Nm 0 1 99.78 100 100
“The scaled mutation rate theta = 2*Ne*mu = 2 describes a region of about 5 99.56 100 100

2 kb assuming a mutation rate of 2.5e — 8. PThe effective population size
corresponds broadly to that of Africa.
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Table 3 Results from the two-population model
simulations (Continued)

10 99.15 99.99 100
50 93.95 99.98 333
100 4161 94.06 0.56

We simulated two populations using ms [75], which splitted and evolved
independently t generations ago. See Table 1 for default parameters. Each
simulation comprises 1,000 independent regions of 2 kb, from which one SNP
per region is sampled at random. Each parameter set was replicated ten times.
For each algorithm, the estimated ancestry proportions over the different runs
were sorted according to the expected ancestry matrix denoting the true
population labels using CLUMPP [44]. From this, standard denoted demographic
parameters were successively varied to exemplify the impact on the estimates.
We report the coefficient of determination that can be understood as the
percentage of the true outcome.

Overall, sNMF and ADMIXTURE show similar results
and outperform fastSTRUCTURE for most of the con-
sidered demographic values (see Table 4). Nevertheless,
the predictive power of ADMIXTURE is slightly higher
than that of SNMF (100% compared to 99% in most
cases). Low sample size decreases the power mostly in
fastSTRUCTURE (for n =8, fastSTRUCTURE: 35%,
sNMF: 99%, ADMIXTURE: 100%), whereas uneven sam-
pling does not influence the estimates of the ancestry
components with any of the programs. The number of
SNPs has a strong impact on all programs. When only
very few sites are available (that is, less than 50 snps),
fastSTRUCTURE produces the best outcome. This is
not surprising, as ADMIXTURE and sNMF have been
particularly developed to consider a dense number of
markers [25]. The effective population size and differ-
ences in population size did not show any direct impact
on the results, which however might matter in combin-
ation with divergence time. The power for all programs
decreases dramatically for populations that do not ex-
hibit substantial population subdivision due to low diver-
gence times or high migration rates, mostly for
fastSTRUCTURE. Reliable ancestry estimates are pos-
sible for £>0.0125 that correspond to F,; >0.0124 [64].
The counter effect of constant migration becomes evi-
dent for a migration rate of 4 Nm > 10 (see Figure 2B),
which homogenizes the population. Sampling more sites
is likely to increase the sensitivity to detect both effects.

Migration between the two descendent populations
(continuous gene flow model)

In addition, we studied the parameter range where mi-
gration becomes detectable depending on the start time
and rate of migration in the continuous gene flow (CGF)
model (see Figure 1A for the model and Figure 2 for re-
sults). Keeping the migration rate fixed at high migration
rate (4 Nm =2,000), the populations become distinguish-
able if the migration starts before 100 generations back-
ward in time (Figure 2B). Beyond that value, the effect of
migration is so strong that the two populations appear
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Table 4 Results from admixture simulation with changing
parameter in the HIl model from HapMap Il data

Parameter  sNMF (R2) ADMIXTURE (R2) fastSTRUCTURE (R2)
Sample size

8 98.2 99 86.66
10 99.5 99.52 98.69
20 99.74 99.82 99.71
40 99.85 99.9 99.86
50 99.87 99.93 99.9
100 99.91 99.95 99.95
nsnps

5 4.56 15.38 19.44
10 15.92 47.37 46.2
50 80.62 86.31 86.89
100 89.67 93.04 93.33
500 9846 99.07 99.11
1,000 99.19 99.54 99.56
5,000 99.84 99.92 99.91
10,000 99.91 99.95 99.95
Nbreaks

5 88.82 8837 8746
10 94.38 94.86 94.43
50 98.74 98.87 98.8
100 99.33 99.41 99.38
500 99.81 99.85 99.84
1,000 99.86 9991 99.9
5,000 99.91 99.94 99.94
10,000 99.91 99.95 99.95
alpha

0.01 99.94 99.99 99.99
0.03 99.93 99.97 99.95
0.07 99.93 99.97 99.92
0.1 99.93 99.97 99.91
03 99.91 99.96 99.95
0.5 99.91 99.95 99.95

The admixed population was generated from the African (YRI) and European
(CEU) population from HapMap lll. A sample from an admixed population is
known to consist of a mosaic of chromosomal regions or blocks from the
ancestral population. With increasing time since the admixture event, these
regions are becoming broken up into smaller pieces through recombination
that is denoted by the number of break points (Nbreaks). Individuals from the
synthetically admixed population were sampled randomly from blocks from
source populations, respectively (the defined admixture proportions, alpha).
Finally, a subsample (nsnps) of uniformly distributed sites was chosen. The
distance of the sites has been chosen to be greater than 1 Mb to assure
linkage equilibrium.

to be panmictic. In contrast, when fixing the start time
of migration at ten generations, we observe that all
populations become recognizable by all programs for 4
Nm < 500. The estimated proportions of ancestry do
not match the proportion of migrants over time. A
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Figure 2 Estimated proportions of ancestry from the continuous gene flow (CGF) model (see main text). See Table 2 for default
parameters. (A) Results for varying divergence time while keeping the migration rate constant at 4 Nm = 50. (B) The estimated ancestry proportions for
keeping the divergence time constant at T= 10 while varying the migration rate. Error bars denote the standard deviation of the estimated ancestry
proportion per population. Simulations were produced using the following ms command [75]: ms 200 5000 -t 2 -1 2 100 100 -em 12 2000-n 2 1 -¢j 2 1.

possible reason is that there is a continuous gene flow
from one population into the other so that recombin-
ation has not enough time to produce the homoge-
neous mosaic of ancestral fragments that is emerging
from the HI model (see below). Therefore, the migra-
tion rate cannot be inferred from this analysis.

We further investigated how the presence of hidden in-
breeding affects the estimated genetic ancestry proportions
from each algorithm. We used the two-population model
with constant migration (4 Nm =100) as previously de-
scribed. In each simulation, a fraction of heterozygote ge-
notypes was decreased proportional to the Fj (for example,
[65]) by replacing them by random homozygote genotypes
in one population. We estimated the genetic ancestry by
the different programs (see Figure 3 for results). The mi-
gration has a homogenizing effect on the genetic variation
in both populations, whereas the inbreeding in one of the
populations results in the opposite pattern. For low Fj

values (F;;<0.1), we observe that SNMF and fastSTRUC-
TURE indicate correctly the effect of migration in their es-
timates (see Figure 3). In contrast, for high Fj values (Fj >
0.1), the genetic variation is more divergent in SNMF and
fastSTRUCTURE; in contrast, both populations appear
more similar with ADMIXTURE. Therefore, sSNMF and
fastSTRUCTURE seem to provide better ancestry esti-
mates compared to ADMIXTURE, particularly when in-
breeding is high (F;>0.1). If migration is absent,
inbreeding has a minor effect on the ancestry estimates
from the different algorithms (data not shown).

For completeness, we studied the running time per-
formance of each algorithm as a function of the number
of considered SNPs and for either K=2 or K=4 as-
sumed ancestral populations (see Figure 4). We observed
that SNMF shows the lowest running times for a given
number of SNPs and K, followed by ADMIXTURE. In
contrast, fastSTRUCTURE exhibits the worst runtime
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Figure 3 Migration and inbreeding using the two-population model (see legend of Figure 2 for ms command). Inbreeding was simulated
by a reduction of the heterozygote genotypes proportional to the given F; value (see main text for details).

and scaling with higher K as expected from the com-
plexity described above.

Performance of the algorithms on the hybrid admixture
(HI) model

Simulated data

Analyses focused on the estimated individual ancestry
proportions in the hybrid population using the HI
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Figure 4 Netto time estimates for fastSTRUCTURE, sNMF, and
ADMIXTURE. Mean time estimates of the termination of the
respective programs from ten independent replications. We simulated
100 chromosomes from two populations with an effective population
size of 10,000 and a Ne*m = 20 using ms [75] (see legend of Figure 2
for command details). The termination time can be expected to scale
similarly as the number of used SNPs given the complexity of the
programs.

model (Figure 1B). We compared them with the real
proportions of genomic admixture in each individual;
this measure was estimated for each simulation by tra-
cing back the ancestry of the genomic fragments that
compose the genome of each admixed individual to ei-
ther of the two parental populations. Therefore, in con-
trast to other approaches, which produce admixed
individuals in forward generations from sampled real
populations (that is, African Americans have been
modeled as a mixture of CEU and YRI individuals from
HapMap III [66]; also see the next section), we avoid
the artificial introduction of strong bottlenecks.

As seen in Figure 5, the error of the estimated ances-
try proportions differ based on the software, the
amount of genetic differentiation present among the
parental populations, and the ratios of sampled individ-
uals between the parental populations. With the same
number of sampled individuals by parental population,
ancestry proportions estimated by fastSTRUCTURE
show the largest deviation to the real ancestral propor-
tions in all the simulations. In all cases, admixture pro-
portions in the admixed population tend to be better
estimated if the parental populations are genetically dif-
ferentiated (F,, > 0.1); nevertheless, even in that case,
the mean difference between the estimated and the real
admixture proportion can reach 5% in the case of
sNMF and MDS, and 6% in the case of fastSTRUC-
TURE. Unequal sample sizes of the parental popula-
tions also affect the performance of the different
algorithms. ADMIXTURE and fastSTRUCTURE show
a systematic error bias in the estimation of the admix-
ture proportions in the hybrid population when there is
unequal sample size in the parental populations, inde-
pendently of the amount of population differentiation
among the parental populations.
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Figure 5 Estimated error in the estimated individual admixture proportions from the simulated admixed population (HI model). We
used an extended version of the backward demographic simulator described in [76] that includes recombination and different types of mating
and allows for ancestry painting [14]. Over all parameters that are defined in this model [19], we varied the time of split of the ancestral
populations, which ranged between 50 and 2,000 generations among simulations. Each simulation generated 75 (25 by population) full human
genomes with 22 diploid chromosomes (/) with the following sizes: 13.65, 13.15, 11.20, 10.65, 10.20, 9.65, 9.35, 8.50, 840, 895, 7.95, 8.65, 6.35, 5.80,
630, 6.75, 6.50, 5.95, 540, 5.40, 3.10, and 3.65 Mb [77]. The mutation rate was set to 2.5 x 10°° [78] and the recombination rate to 1.8 x 1072, PLINK
was applied to exclude SNPs with minor allele frequency less than 0.05 and LD (default PLINK —indep 50 5 2). The effective population sizes of
the parental and hybrid populations were set to 5,000 diploid individuals; the time of admixture was ten generations ago, and each parental
population equally contributed to the admixed population. By this way, we minimized the putative effect of genetic drift in the admixture
proportions of the hybrid population. Furthermore, in order to include the effects of bias sample size, we repeated all the analyses with 1:1 (A)
and 1:5 (B) parental population size ratios. Four different algorithms were considered: SNMF, ADMIXTURE, fastSTRUCTURE, and MDS. In the case of
MDS, ancestry proportions of each individual from the admixed population were estimated as the relative position in the first dimension in
relation to the mean estimated coordinate of the parental populations.

Real data from HapMap Il data

Simulations from synthetically generated admixed popu-
lations from African (YRI) and European (CEU) as an-
cestral populations were produced (see Table 4 for
results and clarification of the applied methodology). We
use the number of breakpoints to mimic the time of ad-
mixture [14] and sampled SNPs with a minimum dis-
tance of 1 Mb to ensure linkage equilibrium. The results
for sample size, number of SNPs, and admixture time,
represented here as the number of breaks, are quite
similar to the two-population simulations above. The

power of SNMF and ADMIXTURE is quite comparable.
fastSTRUCTURE loses power more rapidly with lower
sample size and maintains a better power for low num-
bers of SNPs. All programs have an equally high power
to estimate the ancestry components.

Conclusions

Identifying hidden population substructure in the gen-
ome of an individual is important for a number of scien-
tific disciplines. So far, the proposed algorithms are
invaluable tools for detecting and controlling for the
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presence of hidden population substructure. In the sim-
plest demographic models, these methods can also be
used to estimate demographic parameters. However, inter-
preting the output of each algorithm from an evolutionary
point of view can be difficult. Different demographic sce-
narios can lead to the same ancestry estimates, and differ-
ent estimates can be retrieved when applied to the same
dataset. Extrapolating the results from our simple simula-
tions to real data (that is, suggesting which is the best al-
gorithm) can be misleading; except for cases such as the
admixture of European and Sub-Saharan African popula-
tions in the US [67], admixture usually involves more than
two parental populations (for example, Latin America, al-
though see [68]). In addition, parental populations tend to
show a non-negligible gene flow [61] with admixed popu-
lations that can substantially differ in the effective popula-
tion size compared to the parental populations (for
example, see the European Romani [46]), while usually the
parental populations are unknown.

The number of SNPs and sample size seem to be a
limiting factor in all the algorithms that we have tested;
therefore, it would be recommended to use as many
markers (conditioned in the absence of LD when re-
quired by the algorithm) and samples as possible. How-
ever, in our simple model, we observe already good
estimates for >10 samples and >1,000 markers. In case
fewer markers are available, fastSTRUCTURE provides
the best estimates followed by ADMIXTURE and sNMF.
Furthermore, it is recommendable to run more than one
algorithm on the same data at the same time given the
observed diversity of results, different sensitivity to
biased sample size of the different algorithms, and an-
cestry noise. In this sense, combining global ancestry
and population ancestry methods (for example, [69]), or
using the output from these algorithms as summary sta-
tistics [40], can improve the identification of population
substructure. Finally, although they can be used to pro-
vide hypotheses about the origin and evolution of popu-
lations, it is recommended to test the evolutionary
hypotheses by means of other methods [46], rather than
providing an ad hoc interpretation; in particular, any
demographic interpretation from these methods should
be further validated by means of demographic simula-
tions, showing that the proposed demographic model
can produce the observed output of genetic ancestry.
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