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Abstract

In 1962, Thomas Kuhn famously argued that the progress of scientific knowledge results from periodic ‘paradigm
shifts’ during a period of crisis in which new ideas dramatically change the status quo. Although this is generally
true, Alec Jeffreys’ identification of hypervariable repeat motifs in the human beta-globin gene, and the subsequent
development of a technology known now as ‘DNA fingerprinting’, also resulted in a dramatic shift in the life sciences,
particularly in ecology, evolutionary biology, and forensics. The variation Jeffreys recognized has been used to identify
individuals from tissue samples of not just humans, but also of many animal species. In addition, the technology has
been used to determine the sex of individuals, as well as paternity/maternity and close kinship. We review a broad
range of such studies involving a wide diversity of animal species. For individual researchers, Jeffreys’ invention resulted
in many ecologists and evolutionary biologists being given the opportunity to develop skills in molecular biology to
augment their whole organism focus. Few developments in science, even among the subsequent genome discoveries
of the 21st century, have the same wide-reaching significance. Even the later development of PCR-based genotyping
of individuals using microsatellite repeats sequences, and their use in determining multiple paternity, is conceptually
rooted in Alec Jeffreys’ pioneering work.

Keywords: Multilocus VNTR probes, Single locus probes, Avian mating systems, Microsatellite DNA
Introduction
Unique DNA fingerprints arise as a result of restriction
enzyme digestion of an individual’s tandem repeat loci. In
individuals belonging to sexually outbreeding populations,
the resulting multilocus DNA profiles are typically vari-
able and unique to the individual. These multilocus ‘min-
isatellite’ DNA repeats (also known as Variable Number
Tandem Repeats, VNTRs), typically consisting of repeated
10 to 60 bps units, are highly variable in length, as are re-
striction enzyme fragments, and are commonly detected
by hybridization of radiolabeled VNTR probes to restric-
tion enzyme-digested and size-separated genomic DNA.
DNA fingerprinting was originally developed as a tool for
human identification in forensic investigations [1], and
later found application in immigration cases [2] and pater-
nity disputes [3]. Moreover, the subsequent use of DNA
profiling to establish the innocence of numerous convicted
persons prompted a re-examination of the reliability of
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eyewitness evidence [4]. The discovery of a genetic system
that would uniquely identify a person was unanticipated,
even to Jeffreys: ‘We walked out of the darkroom looking
at this complicated mess on an X-ray film and thought
“Whoa, wait a minute. We’ve stumbled on the potential
for DNA-based biological identification”’ [5]. Ideas con-
cerning the potential application of the technique were
equally novel. According to Jeffreys: ‘When I talked about
it in a Department seminar, and then speculated about
what we could use this for, like catching rapists from
semen—about a third of the audience fell over laughing. It
sounds bizarre now because it’s so blindingly obvious that
you can use DNA for this, but believe me, back in the 80s
it was simply not there’ [6].
Jeffreys’ technique [7] resulted in a fundamental change

in the discipline of zoology as it became apparent that
DNA fingerprinting could also be applied to a wide range
of bird and other animal species. Within two years from
its description [7] and the first application of DNA finger-
printing within a legal context [2], two pioneering reports
were published on mating systems in house sparrows
(Passer domesticus) [8,9]. These were the first of many
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studies demonstrating the power with which this tech-
nique could typically determine the genetic identity of
individuals and measure genetic variation in natural
populations. This represented a significant advance over
the degree of genetic resolution that had been available
with earlier isozyme-based techniques, allowing true gen-
etic relationships among individuals to be determined, ra-
ther than them being inferred (often erroneously) from
field observations. This uncovered some remarkable sur-
prises, such as the finding that many species are character-
ized by significant levels of extra-pair paternities, and even
maternities. One example of this was the discovery that in
the Australian superb fairywren (Malurus cyaneus), up to
75% of matings consist of extra-pair copulations [10].
DNA fingerprinting has also enabled zoologists to test
predictions of kin selection models [11] in a genuinely
meaningful way, and multilocus profiles have also been
used to detect species hybrids [12]. The same methods
have been applied less frequently and less successfully to
describe population structure and evolution, though the
success increased with the advent of single locus methods.
Finally, we note that minisatellite DNA fingerprinting has
created spin-off technologies, such as the non-invasive de-
termination of sex [13-15].
Among some zoologists there was a rapid embrace of

the technical challenges associated with DNA fingerprint-
ing technology. Scientists from Brazil, Canada, Germany,
New Zealand, and the UK featured prominently among
the major early contributors. Application of early min-
isatellite DNA fingerprinting tools rapidly progressed
through three stages of development: multilocus minisatellite
Figure 1 Minisatellite repeat units are characterized by an approxima
minisatellite repeat is present at three loci. (B) The number of minisatellite
heterozygous at each of the three loci. Locus 1 genotype: 5, 2; locus 2 gen
autoradiograph showing restriction fragment profiles of four individuals at
with the mother and the other is shared with the father, as would be expe
Note that the unrelated individual shares only a small number of bands wi
probes, single locus minisatellite probes, and digital array
minisatellite typing. These techniques were applied to a wide
range of species and ecological questions, some of which will
be covered in this review. The majority of the minisatellite
work was carried out and reported from 1987 to 1994 with a
trickle of ‘heritage’ reports published as late as 2000 [16].

Review
Technical aspects of minisatellite DNA fingerprinting
methodology
The first protocols for visualizing multilocus DNA fin-
gerprints [7] used relatively long ‘minisatellite’ (VNTR)
DNA probes. Probes were hybridized to restriction
enzyme-digested DNA that had been size-separated and
bound to a nylon membrane. These early probes con-
sisted of concatenates of short (approximately 16 bp)
‘core’ repeats that were found to be both highly con-
served and also distributed throughout the genome [3]
(Figure 1). These conserved core regions were found
within the highly repetitive minisatellite repeat se-
quences. Some of the most commonly used probes
were derived from an intron of myoglobin, and were
referred to as ‘33.15’ (consisting of 29 repeats of a min-
isatellite core with 128 bp of flanking sequence) and
‘33.6’ (consisting of 18 repeats of a 37 bp sequence
unit. The 37 bp sequence unit comprised three repeats
of a 11 to 12 bp core plus two base pairs) (sourced
from Jeffreys’ United States Patent: US5413908; http://
www.google.com.au/patents/US5413908).
Multilocus, minisatellite probe analysis (early ‘DNA fin-

gerprinting’) required relatively large (that is, microgram)
te 16 bp core sequence in humans and other animals. (A) A core
repeats at these loci are shown for one individual (the mother) who is
otype: 7, 3; and locus 3 genotype: 8, 1. (C) Representation of an
these three loci. At each locus in the child’s profile, one allele is shared
cted when maternity and paternity have been correctly identified.
th the individuals from this family.
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amounts of high quality, high molecular weight, genomic
DNA digested with an appropriate restriction enzyme. Re-
striction enzymes with 4 bp recognition cut sites, such as
HaeIII, were commonly used because they cleave DNA
frequently and hence typically digest the target DNA se-
quences close to the repeat motifs. The resulting frag-
ments were separated according to size by electrophoresis
through agarose gels, and then transferred to a nitrocellu-
lose or nylon membrane in preparation for Southern blot
hybridization (see Kirby [17] for detailed descriptions).
The membrane containing denatured DNA fragments was
then hybridized to a radioactively labeled copy of the min-
isatellite DNA probe (that is, concatenates of 16 bp
minisatellite ‘core’ repeats). Hybridization of the la-
beled minisatellite probes to the digested DNA was de-
tected by autoradiography (although additional labeling
methods were sometimes used, including those based on
the detection of light using horseradish peroxidase). Suc-
cessful multilocus minisatellite hybridization typically pro-
duced a unique pattern of signals, ‘a DNA fingerprint’, of
co-dominant markers that was unique to an individual
(Figure 2). When two parents and an offspring were ana-
lyzed, a clear pattern of inheritance was usually observed
(Figures 1 and 2C).
For zoologists, the difficulty in applying this technique

was the requirement for specialized molecular biology
skills, at the time not generally available to many in the
field. The Southern blotting technique is a lengthy and
precise method where well-designed experiments and
careful benchwork are necessary for optimal results [18].
Many early DNA fingerprinters experienced non-specific
Figure 2 Sexing and paternity in skuas. (A) An adult south polar skua (C
below). (B) Multilocus DNA fingerprints resulting from hybridization of prob
digested with the restriction enzyme HaeIII [14]. Arrows indicate two sex-lin
Multilocus DNA fingerprints of three south polar skua families with the propose
to either putative parent (resident at the nest) are indicated by arrows.
probe hybridization problems with blotting media and
resorted to the inclusion of one or more exotic blocking
agents, such as dried milk powder, in pre-hybridization
buffers. Furthermore, probes were not conveniently
available from scientific biotechnology companies and
had to be propagated in cloning vectors. Labeling these
probes required 32P radioisotope facilities and expertise.
Additionally, one could never be certain ahead of time
how long to leave autoradiographs to develop in order
to obtain the clearest signals.
With experience, many laboratories were able to pro-

duce high quality multilocus minisatellite profiles. Re-
grettably, this is where many of the more difficult
technical problems began. In order to compare between
gels, a ‘standard’ individual of known DNA concentra-
tion was used. By varying conditions it was possible to
ensure that the same number of bands were present in
this individual, on different gels. Restriction fragments
could then be unequivocally recorded as present or absent
(coded as 1, 0 in a data matrix; see Kirby [17] p. 240). In
practice, however, some signals were very weak, making
scoring difficult. This problem was not helped by the non-
linear response of autoradiography film to exposure time.
Similarly, it was often difficult to determine if signals of
similar mobility in lanes widely separated across a gel had
truly migrated the same distance from the origin. Statis-
tical quantification of these results was relatively daunting
and was usually calculated using a Mantel test to deter-
mine the correlation between two distance matrices.
A second generation of minisatellite DNA fingerprint-

ing detected minisatellite repeat patterns at a single
atharacta maccormicki; above) and an adult brown skua (C. lonnbergi;
e pV47–2 to genomic DNA from male and female brown skua
ked DNA fragments that are present in females but absent in males. (C)
d relationships indicated above. DNA fragments that cannot be attributed
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locus. One of two methods was used to detect these re-
peat sequences. First, in some cases, minisatellite probe
hybridizations were performed under high stringency
conditions with the probes sometimes hybridizing to
unique, locus-specific stretches of sequences that flanked
the repeat core. Successful hybridizations then resulted
in simple single locus patterns, rather than the multilo-
cus DNA profiles typically seen using the 33.6 and 33.15
probes under less stringent conditions (Figure 3C). A
second approach involved the direct isolation of these
locus-specific minisatellite sequences, although this
method required significant effort. Genomic DNA librar-
ies had to be constructed and subsequently screened with
radioactively labeled core repeat probes to detect inserts
containing useful polymorphic repeat DNA loci. The next
step was to sub-clone the unique flanking regions of the
repeat. These unique regions needed to be close enough
to the repeat to be contained within a single restriction
enzyme fragment. The fragment was then sub-cloned and
used as a probe in Southern blots of genomic DNA. These
fragments often returned the same simple patterns with
only two co-dominant signals per individual.
Single locus minisatellite DNA fingerprints found im-

mediate favor with forensic scientists, because these
types of data were easier to defend as evidence in court.
However, there were still fundamental questions to re-
solve in distinguishing alleles of the same apparent mo-
lecular size. Such alleles were distinguished through the
use of ‘fixed bins’ (in which bins of particular molecular
size ranges were a priori determined) or ‘sliding bins’
(these were not predetermined and were simply used to
determine if signals were, within tolerance, similar in
Figure 3 Multilocus and single locus DNA fingerprinting in the pukek
communal breeder. (B) Multilocus DNA fingerprinting profiles of pukeko be
restriction enzyme HaeIII and hybridized to the probe pV47–2. (C) Single lo
YNH24 [26]. Arrows indicated the four alleles detected and the genotype o
mobility) [19]. The simple patterns and hypervariable
character of the probes, coupled with the fact that they
could be used in combination to produce very high ex-
clusion probabilities, quickly served to make them useful
tools for forensic casework [20]. Early use of single locus
minisatellites was largely limited to humans, as few zool-
ogists were equipped to take up the technical challenge
of creating panels of single locus probes for their favorite
species; although the few who did are highlighted in the
next section.
With the invention of the PCR an effort was made to

incorporate the many advantages of this amplification
method to the analysis of minisatellite loci. Jeffreys and
co-workers developed this prospect with the develop-
ment of a digital array typing technique [21,22]. This
method was an impressive technological accomplish-
ment, but its appeal to zoologists was limited. This was
likely due to the advent of microsatellite-based methods
that resulted in data which were technically much sim-
pler to produce and easier to interpret, particularly for
those with previous experience in allozyme electrophoresis
and analysis. Nevertheless, Jeffreys’ early discoveries need
to be credited for having led the way to the transformation
of many researchers from ecology and evolutionary biolo-
gists into population and evolutionary geneticists.

The introduction of DNA fingerprinting to experimental
zoology
Jeffreys’ multilocus, minisatellite DNA fingerprinting meth-
odology had its earliest, most significant impact on the
study of avian mating systems [8,9]. Early publications
challenged the ‘nuclear family’ model of birdlife where two
o. (A) The pukeko or purple swamphen (Porphyrio porphyrio) is a
longing to a communal group. Genomic DNA was digested with the
cus DNA profiles detected in pukeko using the minisatellite probe
f each individual is given above.
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doting parents raise their own exclusive offspring in a
world of adversity. Costs and benefits of alternate breeding
strategies, including brood parasitism and extra-pair copu-
lation, were able to be investigated with new precision, and
a number of studies probing kin selection models in a wide
range of animals began to follow.
Gibbs et al. (1990) examined the dynamics of a

spatially complex breeding colony of red-winged black-
birds (Agelaius phoeniceus). The dominant males sing
and display strongly to secure the best (central) territor-
ies in the reed marsh. They attract most female partners
to build nests there. They also gain most extra-pair cop-
ulations with females in neighboring territories, but this
advantage is offset because females residing in their own
territories gain more than average numbers of extra-pair
copulations [23].
Owens et al. (1995) investigated the Eurasian dotterel

(Charadrius morinellus), a species with sex-reversed
plumage and polyandrous behavior. Here males guard
the nest and provision young so they gain a ‘payoff ’ only
if they can be sure that the eggs that they look after are
the products of their own gametes. Exactly how individ-
uals would know this information is unclear. The inves-
tigators found that only ‘4.6% of chicks tested were not
the genetic offspring of the caring male’. Hence, they
were able to conclude that male dotterels succeeded in
protecting their ‘parental investment’ via a ‘combined
strategy of mate guarding and strategic timing of copula-
tions’ [24].
Burke et al. (1987) provide an interesting contrast

through their earlier study of the facultatively polyan-
drous songbird, the dunnock (Prunella modularis). In
this species several males may accompany a single fe-
male. Males do not discriminate in favor of their own
young, but provision the entire brood with an intensity
of effort that reflects the amount of time that they had
exclusive ‘access’ to the female just prior to egg laying
[25]. The latter is then argued to represent a ‘reliable’
proxy for paternity.
Lambert et al. (1994) tackled an even more enigmatic

case study, polygynandry in the pukeko (Porphyrio por-
phyrio). They found that supposedly dominant males did
not consistently sire the majority of offspring in a group
(Figure 3). These findings thus provide a serious chal-
lenge to conventional ideas about dominance and its
presumed advantages [26]. Another species with a vari-
able breeding system, including apparent female-female
pairs, is the brown skua (Catharacta lonnbergi) [27]. In
this case, DNA fingerprinting showed no extra-pair or
extra-group breeding.
Other communally breeding birds have also been

tested, including European bee-eaters (Merops apiaster)
[28], Florida scrub-jays (Aphelocoma coerulescens) [29],
and white-winged choughs (Corcorax melanorhamphos)
[30]. In addition to a small central group of breeding
adults, the tribe was found to consist mainly of offspring
with delayed dispersal who were functioning as helpers
at the nest. In the last of these three species members of
one tribe may even ‘kidnap’ members of another to make
up their numbers in an apparent effort to maximize for-
aging success. In contrast, the superb fairywren (M. cya-
neus) also breeds co-operatively, but the majority of the
offspring they tend are sired by males from outside the
group [10]. In this case, the helpers assist the breeding fe-
male to offset the ‘costs’ of extra-pair fertilization.
Minisatellite DNA fingerprinting was applied to other

avian breeding systems [31], to measure genetic vari-
ation, and to assess bird population structure to identify
‘source’ and ‘sink’ populations [32,33], for example in the
blue duck (Hymenolaimus malacorhynchos). Minisatellite
DNA fingerprinting was also used to determine genetic
variability [34] and breeding behavior [35] in the critically
endangered black robin (Petroica traversi) on New Zeal-
and’s Chatham Islands. This species was shown to be so-
cially and sexually monogamous, but with very low
genetic variability, challenging conventional ideas about
risk assessments associated with inbreeding in avian taxa.
The black robin population suggested that once recessive
deleterious alleles have been purged from bottlenecked
populations by natural selection, the remaining individ-
uals may be as fit as, or almost as fit as, comparable out-
bred populations. Only future events, such as a disease
outbreak, will determine whether such genetically invari-
ant species or populations are more vulnerable to extinc-
tion. However, in approximately 20 years since these
studies were performed, the black robin continues to
thrive with increasing numbers, despite the fact that the
Chatham Islands still acts as a summer breeding ground
for extremely large numbers of diverse avian species,
resulting in the endangered black robin being exposed to
an extraordinary diversity of pathogens.
Birds were not the only subjects of field studies using

minisatellite DNA fingerprinting. For instance, Amos
and colleagues carried out extensive work on mating
systems in marine mammals [36,37]. In particular these
were focused on testing if the energy costs of repeatedly
fighting others to maintain dominance as ‘beachmasters’
was adequately repaid through exclusive ‘access to’ fe-
males and offspring sired. The lions (Panthera leo) of
the Ngorongoro Crater in Tanzania provided an ideal
opportunity for a similar study [38]. In this case young
males have to choose (if they have the opportunity) be-
tween forming a large kinship guild with their brothers
and pridemates (half-brothers or cousins) or a small
guild with unrelated males. This takes place when they
leave their home pride at maturity (or are forced out)
and disperse in search of mates. Joining a large guild of
other males increases the probability of making a
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successful takeover bid for mates in an already estab-
lished pride of related females guarded by resident
males. In guilds of related males the largest and most
dominant male achieves the majority of copulations, but
the unrelated males in the smaller guilds sire approxi-
mately equal numbers of offspring. These observations
are in accordance with expectations from the Kin selec-
tion theory as in the larger guilds the sub-dominant
males can be considered to have contributed to spread-
ing their own genes through aiding the reproductive suc-
cess of their dominant relative.
Minisatellite DNA fingerprinting was also used to

examine population variation in other wild animals
and in fish, examples include the California Channel
Island fox (Urocyon littoralis) [39], the humpback
whale (Megaptera novaeangliae) [40], and a number
of commercial fish stocks [41]. Further applications
for minisatellite analysis were also attempted, includ-
ing the isolation of single locus probes for use in
trait mapping and stock assignment [42-44], with
mixed success. Jeffreys’ DNA fingerprinting method-
ology did, however, lead to the creation of some
functional (though not always commercially viable)
services, including animal paternity testing [45].
Commercialization of DNA profiling ventures for
non-human subjects was difficult primarily due to
the cost per test and time required to return results
to clients. However these ventures did provide some
beneficial services (for example the establishment of
pedigrees may have prevented the loss of valuable
breeding stocks [45]). In one unexpected case, an
aging Afghan hound, thought to have zero viable
sperm count, was shown to have sired a litter of
pups in competition with a vigorous younger, less
experienced, stud dog from the same kennel.
The Jeffreys research group applied their DNA finger-

printing techniques to a wide field in zoology. Work
over several years on the mutational dynamics of minisa-
tellites revealed many interesting aspects in primates
[46] and rodents [47]. The Jeffreys’ research group also
showed how DNA fingerprinting could aid captive
breeding programs for rare and endangered species,
such as the Waldrapp ibis [48]. Other tests were also de-
veloped directly from DNA fingerprinting methods, in-
cluding assays for sex testing (Figure 2B) and assays for
forensic wildlife services to control animal smuggling
and illegal trade of endangered species [12,13].

Later developments in DNA fingerprinting
Multilocus and single locus minisatellite-based ‘DNA
fingerprinting’ methods were generally superseded by
the use of single locus microsatellites to genetically iden-
tify individuals [49,50], and more recently by second
generation sequencing (SGS)-based methodologies,
including panels of SNPs. The original DNA minisatel-
lite fingerprinting loci continued to be used to a limited
extent for the characterization of individuals [51], popu-
lation studies [52], the identification of disease markers
[53,54] and quantitative trait loci, and the study of gene
expression [55,56].
The transition to the use of single locus microsatellites

as a method for ‘DNA fingerprinting’ was rapid, particu-
larly in the USA, despite the fact that similar levels of
technical laboratory expertise were required for both
methodologies. Isolating species-specific DNA microsa-
tellites, typically comprising of di-, tri-, and tetranucleo-
tide repeat units, required substantial effort, particularly
the construction and screening of genomic DNA librar-
ies that were required to identify polymorphic loci. In
some cases, however, the power of a multilocus assay
using highly variable, generic minisatellite probes, suc-
ceeded in revealing differences between individuals when
polymorphic microsatellite markers were unavailable or
uninformative for a given species. An analysis of the
kakapo (Strigops habroptilus), a nocturnal parrot en-
demic to New Zealand, illustrates this point particu-
larly well [57].
Technical advances in microsatellite DNA fingerprint-

ing, including rapid automated high resolution identifi-
cation of alleles through capillary electrophoresis,
simplified the procedure and increased its reproducibil-
ity. The use of PCR allowed genetic information to be
recovered from trace amounts of modern and even an-
cient samples, and the repository of published PCR
primers gradually expanded to include increasing num-
bers of species. Nonetheless, microsatellite-based
methods are essentially based on the conceptual ap-
proach developed using multilocus, minisatellite DNA
fingerprinting for the identification and characterization
of individuals and populations. In this regard, the influ-
ence of DNA fingerprinting is likely to be an enduring
one.

Microsatellites in zoology
The disciplines of reproductive ecology and mating systems
were markedly accelerated as the use of microsatellite-
based DNA fingerprints became increasingly widespread.
For example the application of DNA microsatellites to the
offspring of vertebrates that simultaneously give birth to
more than one offspring has revealed concurrent multiple
paternities in a wide range of organisms, particularly in rep-
tiles [58] (but also noted in birds and mammals). This
phenomenon was first documented prior to the use of min-
isatellite DNA fingerprinting, for example in Belding’s
ground squirrel [59] and eastern bluebirds using protein
electrophoresis [60]. The technically less challenging as-
pects of isolating and routinely amplifying DNA microsatel-
lites (compared with multilocus minisatellites) and their
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usefulness to unambiguously assigning parentage resulted
in an exponential increase in studies of animal mating sys-
tems. Concurrent multiple paternity has now been widely
documented in virtually all vertebrate groups investigated,
for example it commonly occurs in over 50% of reptilian
clutches [58]. Simultaneous multiple paternity has been de-
tected in virtually all turtle species examined to date [61],
lizards and snakes [62] (see summary in Uller and Olsson
[58]), birds [63], and in mammals, where patterns of pater-
nity have been studied [64]. In fish, where parentage has
been studied quite extensively over the last two decades,
microsatellite fingerprinting has revealed not only high
levels of multiple paternity within broods, but also variable
levels of multiple maternity as well, particularly in spe-
cies with ‘male pregnancy’ or nest defence (reviewed
by Coleman and Jones [65]). Multiply sired litters in
mice were found to be relatively common (approxi-
mately 33 of 143 litters, or roughly 23%) in a survey of
wild populations, with more prevalence in high density
populations [66]. These observations, and the male
postcopulatory competition (such as sperm competi-
tion) that may ensue [67], have fostered a great deal of
speculation and literature surrounding the potential
benefits of mating with more than one male. Hypothet-
ical adaptive benefits have been proposed to include
ensuring the complete fertilization of entire clutches of
eggs [68,69], increasing the genetic variation of a litter
[70], increasing the likelihood of successfully compat-
ible gametes [71] (as reviewed by Dean et al. [66]), and
the idea that mating with numerous males may serve
as a type of confusion mechanism to decrease the
probability of infanticide [72]. The ability to accurately
assign paternity has provided a mechanism for testing
of several hypotheses surrounding sperm competition,
including the relative reproductive success and the sig-
nificance of male mating order [73]. Numerous mecha-
nisms of postcopulatory competition, such as embryonic
cannibalism in sharks [74], have been suggested. Multiple
matings by females have now been documented to occur
with such frequency that the evolutionary significance of
this phenomenon became the subject of considerable de-
bate (see Wolff and Macdonald [72] for a review).
The use of DNA microsatellites has exposed other as-

pects of vertebrate mating systems that were initially
considered to be rare anomalies. For example the first
cases of virgin births (automictic parthenogenesis) in
sharks were confirmed using DNA microsatellites [75-77].
Other vertebrates, including snakes [78] and lizards [79],
have been documented to undergo parthenogenesis, in-
cluding a high profile study documenting parthenogenesis
in Komodo dragons [80]. Collectively these studies point
to the existence of reproductive plasticity among females
across a wide variety of taxa, and the consequences of this
plasticity may be worthy of consideration for captive
breeding programs involving endangered species [80].
Early examples of the genetic documentation of vertebrate
asexual reproduction were limited to captive animals, but
recent work suggests the existence of parthenogenesis also
in wild litters of North American copperheads and cotton-
mouth snakes [81], suggesting that the phenomenon may
be more widespread than previously thought.

DNA microsatellites used to study population subdivision
and male-mediated gene flow
DNA microsatellites have been useful tools describing
population connectivity, isolation, and the particulars of
inter-population gene flow. They have also been used ex-
tensively to assess population subdivision, sometimes in
relation to geographical barriers [82]. Contrasting pat-
terns of genetic partitioning between maternally inher-
ited mitochondrial sequence data and autosomal DNA
microsatellites have revealed levels of male-mediated
gene flow in several species, including bats [83], great
white sharks [84], sea turtles [85], sharks [86], and pri-
mates [87]; note this study also included Y chromosome
markers.

DNA microsatellites and conservation biology
Essentially, the extensive use of microsatellite DNA markers
has directly given rise to a number of high profile journals,
including Molecular Ecology, Molecular Ecology Resources,
and Conservation Genetics. A very large number of micro-
satellite loci have now been used to document levels of gen-
etic variation in rare and endangered species and thus better
inform conservation management actions. In the Florida
panther, for example, a small remnant population (less than
100 individuals) is thought to suffer from inbreeding depres-
sion. The population carries genetic anomalies including
kinked tails and heart defects. In an attempt to mitigate in-
breeding, several females from a Texas population were out-
crossed with the Florida population. DNA microsatellites
enabled researchers to generate detailed pedigrees to moni-
tor the success of this genetic restoration program [88].
The application of DNA microsatellites has improved

the ability to monitor and enforce conservation mea-
sures. As an increasing number of populations are char-
acterized with DNA microsatellites they serve as useful
databases to identify the provenance of animals confis-
cated at borders. Widespread progress has been made
assigning various endangered and threatened species to
geographic regions using DNA microsatellites, including
tortoises [89], fish [90], bears [91], and elephants [92].
Although the existence of microsatellite databases is
generally useful, problems do arise when genotype data
are shared among laboratories, due to differences in al-
lele scores for similar samples. This has been alleviated
somewhat by the subsequent use of universal reference
samples for allele calibration.
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Although the processes by which microsatellites mu-
tate are generally established, uncertainties persist about
their mode of evolution, stepwise versus two-phase
[93,94], as well as the extent with which these modes of
evolution uniformly apply to repeats of varying motifs
and sizes. Although these unknowns potentially com-
promise the application of standard population genetic
statistics to microsatellite loci, most investigators treat
them as if they were of minor influence. Some software
bundles, such as Bottleneck [95], do account for differ-
ent mutation models. Recent results show that human
microsatellites have a predominantly stepwise mode of
mutation, with a slight bias towards an increase in size
and an upper size limit [96]. The same study also shows
a higher mutation rate for tetranucleotide repeats than
for dinucleotide repeats. This will allow investigators to
concentrate on recovering suitable repeat types from
genomic screens, as these not only promise to be more
polymorphic but will also yield allelic genotypes that are
easier to score. As a result, zoologists are now positioned
for a new age of improved microsatellite studies sup-
ported by genomics and SNP analyses plus expression
profiling to advance causal explanations for evolutionary
phenomena.

DNA fingerprinting in the era of whole genome second
generation sequencing
Ecologists continue to develop microsatellite loci for
population genetic studies using the relatively recently
introduced SGS platforms [97], and pipelines are emer-
ging to maximize the success rate of microsatellite PCR
primer development from SGS runs [98-101]. Bioinfor-
matics tools, including RepeatSeq [102] and lobSTR
[103], are emerging to improve the mapping success of
microsatellite reads from SGS data, although simple se-
quence repeats such as microsatellites remain relatively
problematic to analyze with SGS (due to difficulties se-
quencing through the entire repeat, reliably allelotyping
a locus, and complexities associated with bioinformatically
mapping simple sequence repeats). One of the potential
benefits of using SGS to analyze DNA microsatellite loci
(fingerprinting) is the very high output of data. Addition-
ally, deeper sequencing via SGS can reveal variant alleles
that may go undetected when analyzed by PCR with fluo-
rescently labeled fragments and capillary electrophoresis.
Will ecologists and zoologists continue to rely on

DNA microsatellite fingerprinting of individuals and
populations in the era of second and third generation se-
quencing? Panels of SNP loci analyzed on SGS platforms
have a number of advantages over ‘traditional’ microsat-
ellite and minisatellite fingerprinting, which may lead to
their continued replacement over these VNTR-based
DNA fingerprinting techniques in zoology. One advan-
tage of using large panels of SNPs for fingerprinting is in
their accuracy. However, in principle, although SNP vari-
ants can be unequivocally assigned to a single individual,
analyses of non-invasively collected samples are also
proving problematic because, like microsatellite loci,
dropout of allelic SNPs can be significant [104]. An add-
itional advantage is the requirement of only short
stretches of DNA (<50 bp), allowing the analysis of
highly degraded material such as that found in environ-
mental samples (such as soil), low quality non-invasive
samples (such as feces), as well as historical and ancient
DNA. Research along these lines has allowed association
and evolutionary studies of a number of iconic animals,
including 40,000-year-old DNA from a wooly mammoth
[105], 120,000-year-old DNA from a polar bear [106] and,
very recently, a 700,000-year-old horse genome [107].
Rapidly developing SGS technologies now make it pos-

sible to obtain ‘complete’ animal genomes in less than a
day, that in the near future will no doubt be affordable
for most laboratories. At present, the sequencing cap-
acity of larger second generation sequencers, such as the
HiSeq 2500 (Illumina, San Diego, CA, USA), is up to
600 Gb (gigabases) for a full run (reviewed by Glenn
[108]) and about 250 Gb for the more affordable Ion
Proton. The latter, when equipped with a PIII sequen-
cing chip, promises to deliver high coverage of complete
animal genomes in less than a day for less than USD
$1,000 [108].
Data from a complete nuclear genome sequence is ab-

solute. In addition to ‘all’ microsatellite and minisatellite
sequences, complete genomes provide information re-
garding SNPs, insertions/deletions, as well as any gen-
ome rearrangements that would be difficult to detect
using fragment length-based analysis such as capillary
electrophoresis (microsatellites) or probe hybridizations
(minisatellites).
For modern genomes, third generation sequencers are

likely to be of even greater use. The ability of these sin-
gle DNA strand sequencers to sequence strands up to
100,000 bases long in very short times will provide not
only information on sequence variation but also on link-
age. At present these sequencers suffer from high error
rates, approaching 15%, but their utility is in the assembly
of animal genomes, thereby clarifying possible linkages be-
tween SNPs and/or sequence repeats (see Weaver [109]
and Ozsolak [110] for reviews).
The existence of large microsatellite profile databases

has served to benefit many population and ecological
studies. In the same way the accumulation of large com-
puter databases of animal genomes will eventually bene-
fit future molecular ecology studies. The collection,
storage, and maintenance of a complete genome data-
base, however, will no doubt invoke a number of storage
issues. Storage of animal genomes, although a few
gigabases in size, actually contain much less ‘usable’
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sequence, particularly if only SNPs (identified by com-
parison with a suitable reference genome) are used. As
the average number of SNPs in a genome is 1 per
1,000 bases, this would effectively require less than 30
megabytes (MB) of storage. This translates to a total of
approximately 30,000 terabytes (TB) of required stor-
age for the SNPs of 1 billion animals, storage that is
available today. With the information inherent in genome-
wide SNPs, DNA fingerprinting, born from Jeffreys’ initial
discovery of minisatellites, is likely to continue in the near
future with the use of ‘complete’ genome datasets.

Conclusions
It is clear that minisatellite DNA studies of humans and
other animals were the successful forerunners of today’s
microsatellite DNA genotyping methods. But, because
minisatellite DNA methods employed Southern blot ana-
lyses, these were both time-consuming and technically
challenging to perform on a regular basis. In addition,
minisatellite DNA analyses required high quality and large
amounts of sample DNA, which diminished the usefulness
of this technique for ancient and/or degraded samples. In
contrast, microsatellite DNA amplifications by PCR de-
tected similar, although shorter, repeat sequences and
could be applied to ancient and lower quality samples.
Hence, the use of DNA microsatellites became more
widespread among researchers than the minisatellite-
based fingerprinting systems ever were. Nonetheless,
Jeffreys’ original insight, that repeated minisatellite DNA
sequences could be used to study a range of zoological is-
sues, represents one of the important technical and intel-
lectual achievements in the history of zoology.
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